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noise reduction 

Zhang Yunjun a,*, Heresh Fattahi b, Falk Amelung a 

a Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL, USA 
b Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA   

A R T I C L E  I N F O   

Keywords: 
InSAR 
Time series analysis 
Phase-unwrapping error 
Phase correction 
Gal�apagos 

A B S T R A C T   

We present a review of small baseline interferometric synthetic aperture radar (InSAR) time series analysis with a 
new processing workflow and software implemented in Python, named MintPy (https://github.com/insarl 
ab/MintPy). The time series analysis is formulated as a weighted least squares inversion. The inversion is un
biased for a fully connected network of interferograms without multiple subsets, such as provided by modern 
SAR satellites with small orbital tube and short revisit time. In the routine workflow, we first invert the inter
ferogram stack for the raw phase time-series, then correct for the deterministic phase components: the tropo
spheric delay (using global atmospheric models or the delay-elevation ratio), the topographic residual and/or 
phase ramp, to obtain the noise-reduced displacement time-series. Next, we estimate the average velocity 
excluding noisy SAR acquisitions, which are identified using an outlier detection method based on the root mean 
square of the residual phase. The routine workflow includes three new methods to correct or exclude phase- 
unwrapping errors for two-dimensional algorithms: (i) the bridging method connecting reliable regions with 
minimum spanning tree bridges (particularly suitable for islands), (ii) the phase closure method exploiting the 
conservativeness of the integer ambiguity of interferogram triplets (well suited for highly redundant networks), 
and (iii) coherence-based network modification to identify and exclude interferograms with remaining coherent 
phase-unwrapping errors. We apply the routine workflow to the Gal�apagos volcanoes using Sentinel-1 and ALOS- 
1 data, assess the qualities of the essential steps in the workflow and compare the results with independent GPS 
measurements. We discuss the advantages and limitations of temporal coherence as a reliability measure, 
evaluate the impact of network redundancy on the precision and reliability of the InSAR measurements and its 
practical implication for interferometric pairs selection. A comparison with another open-source time series 
analysis software demonstrates the superior performance of the approach implemented in MintPy in challenging 
scenarios.   

1. Introduction 

Time series Interferometric Synthetic Aperture Radar (InSAR) is a 
powerful geodetic technique to extract the temporal evolution of surface 
deformation from a set of repeated SAR images. Accuracy and precision 
of the retrieved surface displacement history are limited by the decor
relation of the SAR signal, the atmospheric delay and the phase- 
unwrapping error. Decorrelation is mainly caused by changes of the 
surface backscatter characteristics over time and by the non-ideal 
acquisition strategy of SAR satellites (Hanssen, 2001; Zebker and Vil
lasenor, 1992). To overcome the limitations associated with early SAR 
satellites, including the relative long revisit time with non-regular 

acquisitions and the large orbit separation (baseline) between repeat 
acquisitions, two groups of InSAR time series techniques have been 
developed: persistent scatterer (PS) methods, which focus on the 
phase-stable point scatterers with applications limited to cities and 
man-made infrastructures (Ferretti et al., 2001; Hooper et al., 2004), 
and distributed scatterer (DS) methods, which relaxed the strict limit on 
the phase stability and included areas that are affected by decorrelation 
through the exploitation of the redundant network of interferograms. 
The DS methods are the focus of this paper. 

Depending on the network of interferograms, DS methods can be 
divided into two categories. The first category uses the network of in
terferograms with small temporal and spatial baselines, known as small 
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baseline subsets (SBAS) (Berardino et al., 2002; Schmidt and Bürgmann, 
2003). These methods solve a system of linear observation equations 
using least squares estimation or L1-norm minimization (Lauknes et al., 
2011). In cases of a non-fully connected network, singular value 
decomposition or a regularization constraint (L�opez-Quiroz et al., 2009) 
is applied to find physically sound solutions. These methods require 
phase-unwrapped interferograms. In cases of low interferometric 
coherence, an integer least squares estimator can be applied to the 
wrapped interferograms, but this estimator is computationally expen
sive (Samiei-Esfahany et al., 2016). 

The second category uses the network consisting of all possible in
terferograms with full exploitation of the network redundancy (Ferretti 
et al., 2011; Fornaro et al., 2015; Guarnieri and Tebaldini, 2008). The 
solution is provided by the maximum likelihood estimator with perfor
mance close to the Cram�er-Rao bound, the highest achievable precision 
(Guarnieri and Tebaldini, 2007), or by eigenvalue decomposition of the 
covariance matrix, which has been shown to be suboptimal for phase 
estimation (Ansari et al., 2018; Samiei-Esfahany et al., 2016). These 
methods swap the processing order and apply the network inversion as 
pre-processing steps for the estimation of optimal phases before phase 
unwrapping. 

Despite the evident strengths of the full network approaches, espe
cially the capability of phase estimation on low coherent areas, they 
remain computationally inefficient relative to the small baseline 
network approaches. Herein, we emphasize on the algorithmic effi
ciency; accordingly, we implemented a weighted least squares (WLS) 
estimator based on SBAS method with linear optimization. This process 
is known as phase linking or phase triangulation (Ansari et al., 2018; 
Ferretti et al., 2011) and referred hereafter as network inversion. The 
precision of network inversion depends on the temporal behavior of 
decorrelation: the small baseline network approaches provide higher 
precision when it is fast decorrelation, while the full network ap
proaches provide higher precision when there is weak but long-term 
coherence (Ansari et al., 2017; Samiei-Esfahany et al., 2016). 

To separate the tropospheric delay from displacement, both PS and 
DS methods traditionally rely on the spatio-temporal filtering of the 
phase time-series by taking into account their different frequency 
characteristics in time and space domain and assuming a temporal 
deformation model (Berardino et al., 2002; Ferretti et al., 2001), which 
can be unrealistic in complex natural environments such as volcanic 
deformation. Recent developments use global atmospheric models 
(GAMs), MERIS, MODIS or GPS wet delay (Jolivet et al., 2011, 2014; Li 
et al., 2009; Onn and Zebker, 2006; Yu et al., 2018), or empirical cor
relation between stratified tropospheric delay and topography (Bekaert 
et al., 2015; Doin et al., 2009; Lin et al., 2010) to correct interferograms 
before network inversion. Since the contribution of tropospheric delay is 
a deterministic component in InSAR phase observation, it is in principle 
preserved in the estimated phase time-series and therefore can be 
mitigated in the time-series domain after network inversion. Similar 
swaps of the processing sequence have been applied to phase unwrap
ping (Guarnieri and Tebaldini, 2008) and topographic residual correc
tion (Fattahi and Amelung, 2013). 

A disconnected network of interferograms with multiple interfero
gram subsets biases the time-series estimation, especially when there is 
no overlap in temporal or spatial baseline among interferogram subsets 
(Lanari et al., 2004; L�opez-Quiroz et al., 2009). For modern SAR satel
lites with improved orbital control and short revisit time such as 
Sentinel-1, the interferograms network can be easily fully connected, 
simplifying the network inversion into an unbiased WLS estimation of an 
overdetermined system. This robust inversion allows separating phase 
corrections from network inversion (Pepe et al., 2011). 

Here we present a new processing chain for InSAR time series anal
ysis with phase corrections in the time-series domain, in contrast to the 
traditional interferogram domain. We refer the time-series domain as a 
series of phases indexed in time order with respect to a common refer
ence acquisition, in contrast to the interferogram domain where the 

phases are indexed in acquisition pairs order. The basic idea is to split 
the time series analysis into two steps (Pepe et al., 2011): i) invert 
network of interferograms for raw phase time-series and ii) separate 
tropospheric delay, topographic residual, timing error and orbital error 
from raw phase time-series to derive the displacement time-series. We 
also present two new methods to correct phase-unwrapping errors in 
interferograms unwrapped by two-dimensional phase unwrapping 
algorithms. 

This paper is organized as follows. We first elaborate the theoretical 
basis of the weighted least squares estimator and evaluate the weight 
functions using simulated data (section 2). The phase-unwrapping error 
correction methods are presented in section 3. We then describe the 
processing chain (section 4) and apply it to data on the Gal�apagos vol
canoes (section 5), followed by a discussion of results (section 6) and 
conclusions (section 7). 

2. Review of weighted least squares estimator 

2.1. Theoretical basis 

We consider N SAR images of the same area acquired with similar 
imaging geometry at times (t1, …,tN), which are used to generate M 
interferograms coregistered to a common SAR acquisition, corrected for 
earth curvature and topography and spatially phase-unwrapped, 
referred to in the following as a stack of unwrapped interferograms. 
Building on Berardino et al. (2002), we model the network inversion 
problem as a system of M linear observation equations with the raw 
phase time-series φ ¼ ½φ2; :::;φN�

T as the vector of the N � 1 unknown 
parameters with reference acquisition at t1. φ corresponds to the 
observed physical path difference or range change from the SAR antenna 
to a ground target between each acquisition and the reference one, in
clusive of all systematic components including ground deformation, 
atmospheric propagation delay and geometrical interferometric phase 
residuals such as those caused by inaccuracy in Digital Elevation Models 
(DEM). For each pixel, the functional model is described as: 

Δφ¼Aφþ Δφε (1)  

where Δφ ¼ ½Δφ1; :::;ΔφM�
T is the interferometric phase vector with Δφj 

as the phase of the jth interferogram, A is an M� ðN � 1Þ design matrix 
indicating the acquisition pairs used for interferograms generation. It 
consists of � 1, 0 and 1 for each row with � 1 for reference acquisition, 1 
for secondary acquisition and 0 for the rest. An example to generate A is 
provided in the Supplementary Information section S2.1. 
Δφε ¼ ½Δφ1

ε ; :::;ΔφM
ε �

T is the vector of interferometric phase residual that 
does not fulfill the zero phase closure of interferogram triplets. It in
cludes the decorrelation noise, phase contribution due to the change of 
dielectric properties of ground scatterers such as soil moisture (De Zan 
et al., 2014; Morrison et al., 2011), processing inconsistency such as 
filtering, multilooking, coregistration and interpolation errors (Agram 
and Simons, 2015; Hanssen, 2001), and/or phase-unwrapping errors. 

A fully connected network of interferograms corresponds to a full 
rank design matrix A. Then the estimation of φ can be treated as an 
unbiased weighted least squares inversion of an overdetermined system. 
The solution of equation (1) can be obtained by minimizing the L2-norm 
of the residual phase vector Δφε as: 

bφ ¼ argmin
�
�
�
�W1=2� Δφ � Aφ

��
�j2 ¼

�
AT WA

�� 1AT WΔφ (2)  

where bφ is the estimated raw phase time-series and W is an M�M di
agonal weight matrix, discussed in detail below. The misfit between the 
estimated and true raw phase time-series is given as: bφε ¼ φ � bφ. It’s 
propagated from Δφε through the network of interferograms. 

An alternative objective function to solve equation (1) is minimizing 
the L2-norm of the residual of phase velocity of adjacent acquisitions 
(equation (16) in Berardino et al. (2002)). Optimizations with both 
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objective functions give nearly identical solutions for a fully connected 
network. For a non-fully connected network, only the minimum-norm 
phase velocity gives a physically sound solution (this is used by 
default in the software, although both objective functions are 
supported). 

For each pixel the quality of the inverted raw phase time-series can 
be assessed using the temporal coherence γtemp (Pepe and Lanari, 2006): 

γtemp¼
1
M
�
�HT exp½jðΔφ � AbφÞ�

�
� (3)  

where j is the imaginary unit, H is an M� 1 all-ones column vector. A 
threshold for temporal coherence (0.7 by default) is used to select pixels 
with reliable network inversion. These pixels are referred to in the 
following as the reliable pixels. Some limitations of this reliability 
measure are discussed in section 6.4. For simplicity, in what follows we 
add bφ1

¼ 0 and refer to the vector bφ ¼ ½bφ1
; :::; bφN

�
T hereafter as the 

inverted raw phase time-series. 
Since contributions of tropospheric delays, topographic residuals 

and/or phase ramps are deterministic components in InSAR phase ob
servations, they are preserved and therefore can be mitigated in the 
time-series domain to obtain the displacement time-series: 

φi
dis¼ bφ

i
� bφi

tropo � bφ
i
geom � φi

resid (4)  

where i 2 ½1;:::N�, bφi
tropo represents the estimated phase contribution due 

to the difference in propagation delay through the troposphere between 
ti and t1; bφi

geom represents the estimated geometrical range difference 
from radar to target caused by the non-zero spatial baseline between two 
orbits at ti and t1, including the topographic phase residual due to DEM 
error, phase ramp due to orbital error, and possible phase ramp in range 
direction due to timing error of SAR satellite; φi

resid represents the re
sidual phase, including the residual tropospheric delay, uncorrected 
ionospheric delay, unmodeled non-tectonic ocean tidal loads (DiCaprio 
and Simons, 2008), the remaining decorrelation noise and/or 
phase-unwrapping errors inherited from Δφε. 

The phase introduced by orbital errors can be modeled as a linear or 
quadratic ramp. It can be estimated and removed using GPS (Tong et al., 
2013), making InSAR measurement dependent on GPS. Considering its 
stochastic behavior and insignificant contribution to the uncertainty of 
velocity estimation compared with the atmospheric delay for most SAR 
satellites with precise orbits (Fattahi and Amelung, 2014), we do not 
correct orbital errors. 

2.2. Implicit assumptions 

The presented approach has two implicit simplifications. First, we 
assume that the residual term Δφε in the phase triangulation functional 
model in equation (1) is zero or strictly controlled to be negligible during 
the least squares estimation. The assumption might not be true due to 
the non-conservativeness of phases in triplets of multilooked interfero
grams caused by the changes in the scattering mechanisms. This non- 
conservativeness has been attributed to soil moisture variations be
tween SAR acquisitions (De Zan et al., 2014), which is especially sig
nificant for L-band (De Zan and Gomba, 2018) and discussed in section 
3.2 and 5.3.2. 

Second, we ignored the spatial correlation of decorrelation noise 
between pixels. This assumption is only satisfied when the SAR system 
resolution equals the pixel spacing. It is not the case in urban areas with 
strong reflecting structures, or in filtered interferograms with reduced 
resolution due to the cropped bandwidth (Agram and Simons, 2015). 

2.3. Choice of weight function 

Four different interferogram weighting strategies are implemented 
in the software. The first strategy is uniform or no weighting, as used in 

the classic SBAS approach (Berardino et al., 2002). In this case, the 
weight matrix W is equal to the identity matrix and the WLS inversion 
simplifies into an ordinary least squares inversion. The other strategies 
are three different forms of coherence weighting, giving observations 
with high coherence (low variance) more weight than observations with 
low coherence (high variance). 

In the second strategy, interferograms are directly weighted by their 
spatial coherence at each pixel (Perissin and Wang, 2012; Pepe et al., 
2015). The weight matrix takes the form: 

W¼ diag
�

γ1; :::; γM� (5)  

where γj is the spatial coherence of the jth interferogram. 
In a third strategy, interferograms are weighted by the inverse of the 

phase variance (Tough et al., 1995). The matrix takes the form: 

W¼ diag
�

1
�

σ2
Δφ1 ; :::; 1

�
σ2

ΔφM

�
(6)  

where σ2
Δφj is the phase variance of the jth interferogram calculated 

through the integration of the phase probability distribution function 
(PDF). For distributed scatterers, the phase PDF is given by equation 
(S15) in the Supplementary Information section S3.2 (Tough et al., 
1995) and used in the software. For persistent scatterers, the Cram�er-
Rao bound of variance is given directly by equation (25) from Rodriguez 
and Martin (1992). The difference of phase PDFs between distributed 
scatterers and persistent scatterers tends to vanish when a large number 
of looks is applied (see supp. Fig. S1a). In practice, a lookup table is 
generated to facilitate the conversion from spatial coherence to phase 
variance (see supp. Fig. S1b). 

The fourth strategy for interferogram weighting is the nonparametric 
Fisher information matrix (FIM), which accounts for the information 
loss due to noise and decorrelation, defined as (Samiei-Esfahany et al., 
2016; Seymour and Cumming, 1994): 

W¼ diag

(
2Lγ12

1 � γ12; :::;
2LγM 2

1 � γM 2

)

(7)  

where L is the number of independent looks used for the estimation of 
spatial coherence γj. Note that FIM is identical to the inverse-variance 
matrix for persistent scatterers. 

2.4. Performance assessment of weight functions using data simulations 

We evaluate the performance of the different weight functions using 
simulated data to address the question of the optimum choice of 
weighting for phase estimation (Cao et al., 2015). Note that the 
maximum achievable precision is bounded by phase decorrelation, 
indicating the inverse of phase variance is the optimum choice theo
retically (Guarnieri and Tebaldini, 2007). 

2.4.1. Simulation setting 
We generate the stack of interferograms for a sequential interfero

gram network with 10 connections for each image. We use the temporal 
and perpendicular spatial baselines from the Sentinel-1 dataset of sec
tion 5. First, we specify an arbitrary temporal deformation model and 
generate the corresponding interferometric phases (Fig. 1a). Then we 
simulate the spatial coherence of each interferogram using a decorre
lation model with exponential decay for temporal decorrelation (Fig. 1b) 
(Hanssen, 2001; Parizzi et al., 2009; Rocca, 2007; Zebker and Villasenor, 
1992). Next, we simulate the corresponding decorrelation phase noise 
for a given number of looks L by generating a random number with the 
PDF of the interferometric phase of a distributed scatterer with the given 
spatial coherence and number of looks and add it to the noise-free phases 
(Fig. 1c, for 3� 1 looks). The construction of the spatial coherence from 
the decorrelation model and the simulation of the decorrelation noise 
are described in detail in the Supplementary Information section 3. 
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Finally, we estimate the variance of the simulated interferometric phase 
σ2

Δφj using windows of 5� 5 pixels and transform it to equivalent spatial 

coherence using γj ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2⋅L⋅σ2

Δφj

q
(Fig. 1d) (Agram and Simons, 

2015). This coherence is used to calculate the weight for the inversion. 

2.4.2. Performance assessment 
To quantify the performance of the time-series estimator for the four 

different weight functions, we evaluate the difference between the 
inverted phase bφi and the specified, true phase φi using a root mean 

square error (RMSE) given as RMSEsim ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΣN
i¼1ðbφ

i
� φiÞ

2
=ðN � 1Þ

q

, 
where N is the number of acquisitions (N ¼ 98). 

Fig. 1e shows the mean RMSE for 10,000 realizations for the four 
different weighting approaches as a function of the number of looks. To 
highlight differences, we also show the difference in mean RMSE with 
respect to inverse-variance weighting (Fig. 1f). The three weighted ap
proaches outperform uniform weighting with coherence weighting 
performing poorer than inverse-variance weighting (as shown by a 
positive difference in RMSE). Compared to inverse-variance weighting, 
FIM weighting gives similar performance for more than 15 looks and 
mixed performance for fewer looks. Similar mixed and unstable per
formance of FIM weighting for small numbers of looks has also been 
observed at other simulated scenarios with both higher and lower co
herences (see supp. Fig. S2). This is different from a previous study 
which supports the superiority of FIM over inverse-variance but 
considered only 25 looks (Fig. 8 of Samiei-Esfahany et al., 2016). Thus, 
we use the inverse of phase variance as the default weight function in the 
software, although all four weighting strategies are supported. 

3. Unwrapping error correction 

The inverted raw phase time-series can be potentially biased by 
wrong integer numbers of cycles (2π rad) added to the interferometric 
phase during the two-dimensional phase unwrapping, to which we refer 
simply as unwrapping errors. Here we describe two methods to auto
matically correct unwrapping errors using constraints from the space 
and time domain, respectively. 

3.1. Bridging of reliable regions 

In the space domain, unwrapping errors introduce phase offsets 
among groups of pixels that are believed to be free of relative local 
unwrapping errors. Such a group of pixels are referred to as a reliable 

region (see Chen and Zebker (2002) for a quantitative definition). These 
regions usually have moderate to high spatial coherence and are sepa
rated from each other due to decorrelation or high deformation phase 
gradients. 

We assume that the phase differences between neighboring reliable 
regions are less than a one-half cycle (π rad) in magnitude. Then the task 
of unwrapping error correction is to determine the integer-cycle phase 
offsets to be added to each reliable region in order to align phase values 
among the regions. We present a bridging scheme to automatically 
connect reliable regions using tree searching algorithms. This is similar 
to region assembly in the secondary network in phase unwrapping 
(Carballo and Fieguth, 2002; Chen and Zebker, 2002), but in the tertiary 
level. To fulfill the assumption of smooth phase gradients between 
neighboring reliable regions, one could remove contributions from the 
troposphere, DEM error, deformation model, ramps before phase 
unwrapping and add them back in after correction. This method is 
particularly well suited for correcting unwrapping errors between re
gions separated by narrow decorrelated features such as rivers, narrow 
water bodies or steep topography. 

3.1.1. Algorithm 
The bridging scheme can be described as a three-step procedure for 

each interferogram. The first step is to identify reliable regions using the 
connected component information from the phase unwrapping algo
rithm such as SNAPHU (Chen and Zebker, 2001). Regions smaller than a 
preselected size are discarded. For each region, pixels on the boundaries 
are discarded using the erosion in morphological image processing with 
a preselected shape and size. The second step is to construct directed 
bridges to connect all reliable regions using the minimum spanning tree 
(MST) algorithm minimizing the total bridge length. We use the 
breadth-first algorithm to determine the order and direction (Cormen 
et al., 2009), starting from the largest reliable region. The third step is to 
estimate for each bridge the integer-cycle phase offset between the two 
regions. For that, we first estimate the phase difference as the difference 
in median values of pixels within windows of preselected size centered 
on the two bridge endpoints. The integer-cycle phase offset is the integer 
numbers of cycles to bring down the phase difference into [-π, π). The 
algorithm has the option to estimate a linear or quadratic phase ramp 
based on the largest reliable region, which is removed from the entire 
interferogram before the offset estimation and added back after the 
correction (switched off by default). 

3.1.2. Simulated data 
We demonstrate the bridging method using a simulated interfero

Fig. 1. Simulations for weight functions perfor
mance assessment. Upper panel: a simulated 
network of interferograms. (a-b) simulated (true) 
unwrapped phase and spatial coherence; (c) 
noise-containing unwrapped phase with L ¼ 3�
1, (d) estimated coherence from the variance of 
(c). Phase data are wrapped into ½ � π; πÞ for 
display. (e) Mean RMSE of 10,000 realizations of 
inverted phase time-series as a function of L as 
the performance indicator for the four weight 
functions. (f) Same as (e) but the difference in 
mean RMSE with respect to inverse-variance 
weighting.   
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gram of western Kyushu, Japan (Fig. 2), a region with multiple islands, 
considering decorrelation noise, ground displacement, tropospheric 
turbulence and phase ramps. We specify spatial coherence of 0.6 and 
0.001 for pixels on land and water respectively and simulate the cor
responding decorrelation noise (see section 2.4.1). The simulation for 
the other phase contributions is shown in supp. Fig. S3. We wrap the 
simulated phase (Fig. 2a), unwrap using the SNAPHU algorithm, and 
apply the bridging method. Fig. 2b and c show the phase residual Δφi

ε 
after phase unwrapping (unwrapping error) without and with unwrap
ping error correction, respectively. The reduction in unwrapping errors 
(from -2π rad in orange shadings for the islands on the west in Fig. 2b to 
0 rad in green shadings in Fig. 2c) demonstrates that the method works. 

3.2. Phase closure of interferogram triplets 

In the time domain, unwrapping errors could break the consistency 
of triplets of interferometric phases (Biggs et al., 2007). The closure 
phase is the cyclic product of the unwrapped interferometric phases: 

Cijk ¼Δφij þ Δφjk � Δφik (8)  

where Δφij, Δφjk and Δφik are three unwrapped interferometric phases 
generated from the SAR acquisitions at ti, tj and tk. The integer ambiguity 
of the closure phase is given as: 

Cijk
int ¼

�
Cijk � wrap

�
Cijk�� � ð2πÞ (9)  

where wrap is an operator to wrap the input number into ½ � π; πÞ. A 
triplet without unwrapping errors has Cijk

int � 0. The number of triplets 
with non-zero Cijk

int among all triplets is given as: Tint ¼ ΣT
i¼1ðC

i
int 6¼ 0Þ, 

where T is the number of triplets (Tint � T). Tint can be used to detect 
unwrapping errors. 

Fig. 3 shows the characteristics of unwrapping errors in the closure 
phase from the Sentinel-1 dataset (stack of multilooked unwrapped in
terferograms) of section 5. The non-zero Cijk in Fig. 3a and b are caused 
by the interferometric phase residuals (see equation (1)), whereas the 
non-zero Cijk

int in Fig. 3c are caused by unwrapping errors. Fig. 3d and e 
show the distribution of Tint . On Isabela island, pixels in non-vegetated 
area have Tint ¼ 0 (dark blue in Fig. 3d) and are free of unwrapping 
errors; while pixels in vegetated area, such as the light-blue to green area 
on Sierra Negra’s south flank in Fig. 3d, have wide-distributed Tint 
values, indicating random unwrapping errors, which are difficult to 
correct. On Fernandina and Santiago island, most pixels share the 
common Tint of 229 and 576 out of 940 triplets, respectively, indicating 
coherent unwrapping errors and can be corrected. 

Several attempts have been pursued to evaluate the phase unwrap
ping and correct the unwrapping errors using closure phase information. 
Hussain et al. (2016) use the closure phase to adjust the cost in the 

three-dimensional phase unwrapping procedure iteratively. Biggs et al. 
(2007) visually identify and correct the unwrapping errors by manually 
adding the integer-cycle phase offsets to badly unwrapped regions of 
pixels. Built on this idea, we develop an algorithm to automatically 
detect and correct the unwrapping errors in the network of 
interferograms. 

3.2.1. Algorithm 
For a redundant network of interferograms, the temporal consistency 

of the integer ambiguities of unwrapped interferometric phases can be 
expressed for each pixel as: 

CUþðCΔϕ � wrapðCΔϕÞÞ = ð2πÞ ¼ 0 (10)  

where C is a T �M design matrix of all possible interferogram triplets, U 
is an M� 1 vector of integer numbers for cycles required to meet the 
consistency of the interferometric phases. An example of C is provided in 
the Supplementary Information section S2.2. Note that equation (10) 
can be ill-posed and does not always has a unique solution, especially 
when T <M. Thus, regularization is required to obtain an optimal so
lution. We assume that the solution is more likely to be small than large, 
and more likely to be sparse than dense. Accordingly, we apply the L1- 
norm regularized least squares optimization (Andersen et al., 2011; Xu 
and Sandwell, 2019), which is also known as least absolute shrinkage 
and selection operator (LASSO), to obtain the solution as: 

bU ¼ argmin
�
�
�
�CUþðCΔφ � wrapðCΔφÞÞ

�
ð2πÞ

�
�j2þα

�
�
�
�U
�
�j1 (11)  

where α ¼ 0:01 is a nonnegative parameter for the trade-off between the 
L1 and L2-norm term, with value chosen based on simulations with 
various values of α (see supp. Fig. S4). The corrected unwrapped inter
ferometric phase is given as: Δφc ¼ Δφþ 2π⋅roundðbUÞ, where round is an 
operator to round the input number to the nearest integer. 

3.2.2. Simulated data 
We demonstrate the phase closure method using a simulated inter

ferogram stack for one pixel (Fig. 4). We first simulate the decorrelation 
noise and ground deformation (see section 2.4.1) for an interferogram 
network with 5 sequential connections using the temporal and perpen
dicular spatial baselines from the Sentinel-1 dataset of section 5. Then 
we randomly select 20% of the interferograms to add unwrapping errors 
with randomly selected cycles (maximum of 2) of magnitude and 
randomly selected sign. Next, we apply the phase closure method and 
compare the unwrapping errors before and after the correction, as 
shown in orange and blue bars in Fig. 4a, respectively. The method 
decreases the number of interferograms affected by unwrapping errors 
from 20% to 2% and reduces the magnitude of the remaining unwrap
ping errors (Fig. 4a). We note that the method could potentially intro
duce new unwrapping errors to the unwrapped interferograms (blue 

Fig. 2. Simulation of unwrapping error correction using the bridging method. (a) Simulated wrapped phase, (b and c) phase residual (unwrapping error) without and 
with unwrapping error correction, respectively. (d) Reliable regions and bridges (white solid lines) generated based on connected components from SNAPHU. White 
shadings in (b and c): areas not considered by the connected components. Black squares represent the reference point. 
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bars in Fig. 4a where there is no orange bar). 
We evaluate the performance of the phase closure method by 

comparing the input and output percentages of interferograms with 
unwrapping errors (before and after correction), considering different 
input percentages and redundancies of the interferogram network. 
Fig. 4b shows for 100 realizations the mean output percentage after 
correction versus the input percentage for networks with 3, 5 and 10 

sequential interferograms. For 5 connections (orange dots in Fig. 4b), 
the method fully corrects unwrapping errors if there are less than 20% of 
interferograms affected; then the improvement slows down with the 
increasing input percentage until it reaches a turning point of 35%, 
beyond which the improvement is marginal. The maximum input per
centages with full correction for 3, 5 and 10 connections are at 5, 20 and 
35%, respectively, indicating better performance for more redundant 

Fig. 3. Characteristics of unwrapping errors in the 
closure phase. (a) Map and (b) histogram of Cijk for the 
interferogram triplet generated from three Sentinel-1 
images acquired at 7 March 2015, 19 March 2015 and 6 
May 2015 from descending track 128. (c) Histogram of 
Cijk

int for the closure phase in (a and b). The non-zero Cijk
int 

are caused by unwrapping errors. (d) Map and (e) histo
gram of Tint (the 475 interferograms from the 98 Sentinel- 
1 images can be combined to form 940 triplets). The 
spikes in (e) at 229 and 576 indicate the unwrapping 
error in Fernandina and Santiago island, respectively.   

Fig. 4. Simulations of unwrapping error correction using 
the phase closure method. (a) Unwrapping errors in in
terferograms before (orange bars, account for 20%) and 
after correction (blue bars, account for 2%). A network of 
interferograms with 5 sequential connections is used. A 
maximum of 2 cycles of unwrapping errors are added 
randomly. (b) Mean output percentage of 100 realizations 
of interferograms with unwrapping errors versus the 
input percentage, with a fixed maximum of 2 cycles of 
unwrapping errors and color coded by network redun
dancy. (c) Same as (b) but with a fixed network of 5 
connections and color coded by maximum unwrapping 
error magnitudes. (For interpretation of the references to 
color in this figure legend, the reader is referred to the 
Web version of this article.)   
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networks. Fig. 4c shows the performances for 5 connections network 
with maximum of 2, 5 and 10 cycles of unwrapping errors. The simi
larity before 30% shows that the method is robust for various magni
tudes of unwrapping errors. Thus, we conclude that the phase closure 
method is suitable for highly redundant networks of interferograms with 
not too many unwrapping errors. 

4. Workflow of InSAR time series analysis 

We have implemented a generic routine processing workflow for 
InSAR time series analysis from a stack of unwrapped interferograms to 
displacement time-series (Fig. 5). The workflow consists of two main 
blocks: (i) correcting unwrapping errors and inversion for the raw phase 
time-series (blue ovals in Fig. 5), and (ii) correcting for phase contri
butions from different sources to obtain the displacement time-series 
(green ovals in Fig. 5). It includes some optional steps, which are 
switched off by default (marked by dashed boundaries in Fig. 5), here we 
present the workflow in its most complete form. Configuration param
eters for each step are initiated with default values in a customizable text 
file (link on GitHub). 

4.1. Starting point: stack of unwrapped interferograms 

As described above, the starting point is a stack of phase-unwrapped 
interferograms coregistered to a common SAR acquisition, corrected for 
earth curvature and topography. We currently support interferogram 
stacks produced by ISCE, GAMMA and ROI_PAC software (Rosen et al., 
2004, 2012; Werner et al., 2000). 

4.2. Network modification 

In order to exclude outliers affected by coherent pixels with 
unwrapping errors, the software provides network modification to 
exclude affected interferograms if the spatially averaged coherence for 
an area of interest falls below a predefined threshold value (switched off 
by default). This is similar to Chaussard et al. (2015) excluding in
terferograms with a low percentage of high coherent pixels. An extra 
constraint could be applied to keep those interferograms if they are part 
of the MST network providing the maximum spatially averaged coher
ence (Perissin and Wang, 2012) to ensure a fully connected network 
(switched on by default). The approach is referred to as coherence-based 
network modification. This is based on the empirical observation that 
reliable regions with unwrapping errors are usually surrounded by 

decorrelated areas. The default area of interest is all pixels on land, a 
customized area of interest including the decorrelated areas around the 
reliable regions is usually more effective. The software also supports 
other approaches for network modification, such as thresholds of the 
temporal and spatial baselines, maximum number of connections for 
each acquisition, and exclusion of specific acquisitions, interferograms. 

4.3. Reference selection in space 

The reference pixel is selected randomly among the pixels with high 
average spatial coherence (�0.85 by default) or can be specified using 
prior knowledge of the study area. The reference pixel should be (i) 
located in a coherent area; (ii) not affected by strong atmospheric tur
bulence such as ionospheric streaks and (iii) close to and with similar 
elevation as the area of interest to minimize the impact of the spatially 
correlated atmospheric delay. For example, Chaussard et al. (2013) 
studied volcano deformation using reference points on inactive, neigh
boring volcanoes. 

4.4. Unwrapping error correction 

Three methods are available to possibly detect and correct unwrap
ping errors in the stack of interferograms. The first method is bridging as 
described in section 3.1. This method is well suited for unwrapping er
rors occurred among islands or on areas separated by steep topography. 
The second method is based on the phase closure as described in section 
3.2. It’s well suited for unwrapping errors in a highly redundant network 
of interferograms. Both methods are operated in the region level, thus 
are efficient. The third approach is to apply both methods, bridging 
followed by phase closure, as they exploit aspects of unwrapping errors 
in space and time domain, respectively. The default is no unwrapping 
error correction. 

4.5. Network inversion 

The raw phase time-series is solved by minimizing the interfero
metric phase residual Δφε. Then, the temporal coherence is computed 
based on equation (3) and used to generate a temporal coherence mask 
for pixels with reliable time-series estimation with a predefined 
threshold (0.7 by default). Pixels in shallow and water bodies are 
masked out if shallow mask and water body mask are available. 

Fig. 5. Routine workflow of InSAR time series anal
ysis. Blue ovals: steps in the interferogram domain 
including unwrapping error correction and network 
inversion; green ovals: steps in the time-series 
domain including phase corrections for the tropo
spheric delay, phase ramps, and topographic re
siduals. White rectangles: input data. Green 
rectangles: output data. Optional steps/data are 
marked by dashed boundaries. (For interpretation of 
the references to color in this figure legend, the 
reader is referred to the Web version of this article.)   
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4.5.1. Phase masking 
In order to exclude outliers affected by decorrelation, the software 

provides masking options (switched off by default) based on the spatial 
coherence (default threshold of 0.4) or using the connected component 
information from phase unwrapping. Note that masking based on spatial 
coherence is equivalent to weighting with a step function. 

After masking, the pixels may have different numbers of interfero
grams. We use not only the pixels that are coherent in all interferograms 
(Agram and Simons, 2015), but relax the pixel selection criterion and 
also use pixels with fewer interferograms as long as a predefined mini
mum number of interferograms is available for each SAR acquisition (1 
by default). Note that with this pixel selection strategy after masking, 
the network inversion result is not sensitive to the few very low coherent 
interferograms in a redundant network, giving robust and consistent 
spatial coverage. 

4.6. Tropospheric delay correction 

Two different approaches for tropospheric delay correction are 
available. In the first approach, the tropospheric delay is estimated using 
Global Atmospheric Models (GAMs). The estimated relative double path 
tropospheric delay at ti between a given pixel p and a reference pixel is 
given in radians as: 

bφi
tropoðpÞ¼

�
δLi

p � δL1
p

� 4π
λ
�
�

δLi
ref � δL1

ref

� 4π
λ

(12)  

where i 2 ½1;:::N�, δLi
x is the integrated absolute single path tropospheric 

delay at ti on pixels x in meters in satellite line-of-sight (LOS) direction 
(δL1

p for t1) and λ is the radar wavelength in meters. The supported 
datasets include ERA-5 and ERA-Interim from European Center for 
Medium-Range Weather Forecast, NARR (North American Regional 
Reanalysis) from NOAA and MERRA (Modern-Era Retrospective Anal
ysis) from NASA (applied by default, using PyAPS software from Jolivet 
et al. (2011, 2014)). 

The second approach is based on the empirical linear relationship 
between the InSAR phase delay and elevation (Doin et al., 2009) which 
in areas with strong topographic variations sometimes outperforms 
corrections using GAMs. On the other hand, the empirical approach 
cannot distinguish between the stratified tropospheric delay and the 
ground deformation correlated with topography such as at volcanoes. 

4.7. Phase deramping 

Phase ramps are caused by residual tropospheric and ionospheric 
delays and to a lesser extent, by orbital errors. For long spatial wave
length deformation signals such as interseismic deformation, ramps 
should not be removed. Instead, physical and statistical approaches 
should be applied to correct the ionospheric delay (Fattahi et al., 2017; 
Gomba et al., 2016; Liang et al., 2018) and/or assess the measurement 
uncertainties (Fattahi and Amelung, 2014, 2015; Fattahi et al., 2017). 
For short spatial wavelength deformation signals such as volcanic 
deformation, landslides, and urban subsidence it is recommended to 
estimate and then to remove linear or quadratic ramps from the 
displacement time-series at each acquisition on the reliable pixels 
(default is no ramp removal). 

4.8. Topographic residual correction 

The systematic topographic phase residual caused by a DEM error is 
estimated based on the proportionality with the perpendicular baseline 
time-series (Fattahi and Amelung, 2013). The original method assumes a 
cubic temporal deformation model, which is not able to capture 
high-frequency displacement components, such as offsets caused by 
earthquakes or volcanic eruptions. The software provides options to 
account for permanent displacement jumps using step functions 

(Hetland et al., 2012) and to generalize polynomial functions with a 
user-defined polynomial order Npoly. The DEM error zε for each pixel is 
then given by: 

bφi
� bφi

tropo¼

 
Bi
?

rsinðθÞ
zεþ

XNpoly

k¼0
ck

�

ti � t1

�k,

k!þ
X

l2Is

slH

 

ti � tl

!!
� 4π

λ
þφi

resid

(13)  

where i 2 ½1; :::N�, Bi
? is the perpendicular baseline between ti and t1, r is 

the slant range between the target and the radar antenna, θ is the inci
dence angle, Hðti � tlÞ is a Heaviside step function centered at tl, Is is a set 
of indices describing offsets at specific prior selected times. zε, ck and/or 
sl are the unknown parameters, which can be estimated by minimizing 
the L2-norm of residual phase time-series φresid ¼ ½φ1

resid; :::;φ
N
resid�

T. An 
example design matrix and the numerical solution of least squares 
estimation are provided in the Supplementary Information section 2.3. 
The necessity of the step function(s) in the presence of deformation jump 
(s) is demonstrated in supp. Fig. S5 (default is no step function with 
Npoly ¼ 2). 

As we are interested in the estimation of zε, the assumed deformation 
model does not need to be a comprehensive representation of the 
deformation processes. Note, however, that equation (13) offers the 
possibility to parameterize the geophysical processes using more com
plex models, e.g. using the regularization functions from Hetland et al. 
(2012). 

4.9. Residual phase for noise evaluation 

The estimate of residual phase bφresid, a by-product of equation (13), is 
the phase component that can neither be corrected nor be modeled as 
ground deformation, thus, is used to characterize the noise level of the 
InSAR time-series. For each SAR acquisition, we compute the root mean 
square (RMS) of the residual phase as: 

RMSi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
NΩ

X

p2Ω

�
bφi

residðpÞ⋅
λ
� 4π

�2
v
u
u
t (14)  

where i ¼ ½1; :::;N�, bφi
residðpÞ represent the residual phase at ti for pixel p, 

Ω is the set of reliable pixels selected based on temporal coherence 
during the network inversion with the total number of NΩ. Due to the 
inadequate knowledge of the long spatial wavelength phase components 
in bφresid, we focused on the noise evaluation of the short spatial wave
length phase components only, including residual tropospheric turbu
lence, uncorrected ionospheric turbulence, and remaining decorrelation 
noise. Therefore, we remove a quadratic ramp from the residual phase of 
each acquisition before calculating the RMS (Lohman and Simons, 2005; 
Sudhaus and J�onsson, 2009). 

4.9.1. Identifying noisy SAR acquisitions 
Assuming the residual tropospheric delay in bφresid is stochastic and 

Gaussian distributed in time (Fattahi and Amelung, 2015), we can treat 
the noisy SAR acquisitions contaminated by severe atmospheric turbu
lence as outliers. Following Rousseeuw and Hubert (2011), we calculate 
the median absolute deviation (MAD) value and mark a SAR acquisition 
as noisy if its RMS value is larger than the predefined cutoff (3 MADs by 
default giving 99.7% confidence). Note that we assume a zero-mean 
value for the distribution considering the positive nature of RMS. The 
automatically identified noisy acquisitions will be excluded in the 
topographic residual estimation (during re-run) and velocity estimation. 

4.9.2. Selecting the optimal reference date 
The SAR acquisition with the smallest RMS value can be interpreted 

as the date with minimum atmospheric turbulence and is used as the 
reference date. We note that changing the reference date is equivalent to 
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adding a constant to the displacement time-series, which does not 
change the velocity or any other information derived from the 
displacement time-series. 

4.10. Average velocity estimation 

For applications with interest on the deformation rate, the velocity v 
is estimated as the slope of the best fitting line to the displacement time- 
series, given as φi

dis⋅λ=ð � 4πÞ ¼ v⋅ti þ c; i ¼ 1; :::;N, where c is an un
known offset constant. Noisy SAR acquisitions are excluded by default 
during the estimation. The standard deviation of the estimated velocity 
is given by equation (10) from Fattahi and Amelung (2015). 

5. Application to Gal�apagos volcanoes, Ecuador 

We apply the routine workflow outlined in the previous section to 
the western Gal�apagos Islands, Ecuador, located around 1000 km west 
of Ecuador mainland (Fig. 6 inset). We consider interferogram stacks 
from the Sentinel-1 and ALOS-1 satellite. For Sentinel-1 (we consider the 
December 2014 to June 2018 period) we use the stack Sentinel processor 
(Fattahi et al., 2016) within ISCE (Rosen et al., 2012) for processing the 

stack of interferograms; we pair each SAR image with its five nearest 
neighbors back in time (sequential network); we multilook each inter
ferogram by 15 and 5 looks in range and azimuth direction respectively, 
filter using a Goldstein filter with a strength of 0.2 (configuration file). 
For ALOS-1 we use ROI_PAC (Rosen et al., 2004) for processing the stack 
of interferograms; we select interferometric pairs with small temporal 
(1800 days) and spatial baselines (1800 m) and with over 15% of 
Centroid doppler frequency overlap in azimuth direction; we multilook 
each interferogram by 8 and 16 looks in range and azimuth direction 
respectively, filter using a Goldstein filter with a strength of 0.5 and an 
adaptive smoothing with a width of 4 pixels (configuration file). We 
remove the topographic phase component using SRTM DEM (SRTMGL1, 
~30m, 1 arc second with void-filled; Farr et al., 2007). The interfero
grams are phase-unwrapped using the minimum cost flow method (Chen 
and Zebker, 2001). In the routine workflow for the Sentinel-1 dataset we 
correct unwrapping errors using the bridging and phase closure method. 
In the routine workflow for the ALOS-1 dataset we exclude interfero
grams using coherence-based network modification with a customized 
area of interest (blue rectangle in Fig. 10b) and correct unwrapping 
errors using the bridging method. We remove linear phase ramps from 
both datasets. 

The Islands host seven active volcanoes characterized by large 
summit calderas with several km radii and by distinguished nonlinear 
deformation behavior. The surface coverage ranges from bare lava flows 
to dense vegetation. We discuss observations of Sierra Negra, Cerro 
Azul, Alcedo, Wolf and Fernandina volcanoes. Sierra Negra erupted in 
26 June 2018, Wolf volcano in May 2015 and Fernandina volcano in 
September 2017 and June 2018. 

Products of the routine workflow include the mean LOS velocity 
(Fig. 6) and the displacement time-series (Fig. 7, shown for Fernandina 
island only). The center of Sierra Negra caldera uplifted at a mean rate of 
60 cm/yr (Fig. 6) but the uplift rate varied with time (Fig. 8). The 
deformation at Cerro Azul volcano was caused by a sill intrusion in 
March 2017 (Bagnardi and Hooper, 2018). 

5.1. Comparison with GPS 

To validate the InSAR measurements we use the continuous GPS 
measurements at stations in the Sierra Negra caldera (circles in Fig. 8a; 
Blewitt et al., 2018). All three GPS components in east, north and ver
tical directions are used to project displacements into InSAR LOS di
rection. Both InSAR and GPS time-series are referenced to station GV01 
in space and a common reference date in time. The InSAR data for each 
GPS point is obtained by linear interpolation (InSAR pixel size is 64�
70 m2). The InSAR and GPS total displacements for the period of interest 
(Fig. 8a) and the displacement time-series (Fig. 8b) agree very well, 
except for GV10 discussed below. To quantify the agreement, we assume 
the GPS time-series as truth and compute the coefficient of determina
tion R2 between InSAR time-series and GPS time-series and the RMSE 
given as: 

RMSEInSAR ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ΣNcomm
i¼1

�
di

InSAR � di
GPS

�2
.
ðNcomm � 1Þ

r

(15)  

where di
InSAR ¼ φi

dis⋅
λ
� 4π and di

GPS are the InSAR and GPS time-series in 
LOS direction, respectively, at the ith common date. Ncomm is the total 
number of common dates. 

The temporal coherence at the GPS stations varies from 0.96 to 1.0 
(Fig. 8b) indicating reliable InSAR measurements at these locations 
(except GV10). The R2 at the GPS stations are 1.0 and the RMSE varies 
from 0.5 to 1.8 cm (Fig. 8b), confirming the good agreement of the two 
measurements. The exception is station GV10 (R2 of 0.72 and RMSE of 
3.9 cm), which is eliminated during posterior quality assessment due to 
low temporal coherence of 0.64 (below the threshold of 0.7). This sta
tion is located in a more densely vegetated area outside the caldera on 
the rim where decorrelation due to vegetation affects the interferometric 

Fig. 6. Mean LOS velocity at Isabela, Fernandina, and Santiago (main image), 
the westernmost islands in the Gal�apagos archipelago (inset). The velocity is 
estimated from 98 Sentinel-1 descending track 128 SAR acquisitions from 
December 2014 to 19 June 2018 and wrapped into [-3, 7) cm/yr for display so 
that one color-cycle represents 10 cm/yr displacement velocity. Black square 
represents the reference point. Black triangle indicates the location of the pixel 
covered by the lava flow of the 2015 Wolf eruption used in Fig. 15b and c. Dark 
blue in Santiago island indicates biased velocity estimation caused by remain
ing unwrapping errors. The southeast part of the caldera of Volc�an Alcedo has 
been subsiding at a rate of -3.1 cm/yr. The center of Fernandina caldera uplifted 
by 14 cm before the September 2017 eruption, subsided during the eruption 
and uplifted by 35 cm until the June 2018 eruption (Fig. 7). (For interpretation 
of the references to color in this figure legend, the reader is referred to the Web 
version of this article.) 
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coherence (see supp. Fig. S6). 

5.2. Assessment of unwrapping error correction 

The islands of Fernandina and Santiago exhibit unwrapping errors 
relative to Isabela island due to the water separation. The unwrapping 
errors are represented by the low temporal coherence of about 0.49 and 
0.07 for Fernandina and Santiago with Sentinel-1 dataset, respectively 
(pixel A and B in Fig. 9a). Since there is no indication of localized sub
marine deformation between Isabela and Fernandina or between Isabela 

and Santiago during the time period of Sentinel-1 dataset, we believe the 
phase differences among the three islands fulfill the bridging assumption 
(less than π rad in magnitude). Thus, we applied the bridging method 
followed by the phase closure method to correct the potential unwrap
ping errors in the interferogram stack (Fig. 9). The bridging method 
leads to increased temporal coherence of 0.96 and 0.55 at these two 
points, respectively (Fig. 9b). The phase closure method leads to further 
increased temporal coherence of 1.00 and 1.00, respectively (Fig. 9c). 

We note that for Santiago, however, the phase closure method did 
not fully correct the large amount of unwrapping errors, resulting in a 

Fig. 7. Displacement time-series on Fernandina volcano with Sentinel-1 data. Dashed lines: eruption events on September 2017 and June 2018. Orange star: 
automatically selected reference date. The reference point is on Isabela island (black square in Fig. 6). Data are wrapped into [-10, 10) cm for display. (For 
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 
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biased average velocity estimation of � 0.5 cm/yr (Fig. 6). This is due to 
the assumption of sparse unwrapping errors in the phase closure 
method, which is not the case for the Sentinel-1 dataset in Santiago: 576 

out of 940 interferogram triplets have non-zero integer ambiguity 
(Fig. 3e). Conversely temporal coherence after the phase closure 
correction can be partly biased. 

5.3. Assessment of network inversion 

5.3.1. Temporal coherence 
The quality of the network inversion can be evaluated posteriorly 

using the temporal coherence. In Fig. 10, we compare for the ALOS-1 
dataset the temporal coherence obtained by inverting a network of 
small baseline interferograms using uniform weighting (classic SBAS; 
Fig. 10a–c) with that obtained by inverting the network after coherence- 
based network modification (an option of the routine workflow) using 
inverse-variance weighting (Fig. 10d–f). The first approach assumes an 
oversimplified linear relationship between the spatial coherence of each 
interferogram and its spatial and temporal baseline (Hooper et al., 2007; 
Zebker and Villasenor, 1992); while the second approach uses the 
observed spatial coherence on the manually specified area of interest 
(blue rectangle in Fig. 10b and e). This approach more reliably identifies 
the coherent interferograms, especially when the simple decorrelation 
model does not apply, e.g. vegetated areas, long temporal baseline in
terferograms on Sierra Negra caldera with low coherence due to high 
deformation phase gradient (Baran et al., 2005). The improvement in 
temporal coherence using the second approach leads to additional 
reliable pixels (Fig. 10c and f). 

5.3.2. Inverted raw phase 
The temporal filtering performed by the inversion of a redundant 

network of interferograms is illustrated by comparing an observed 
interferogram with the interferogram reconstructed from the inverted 
raw phase time-series (referred to by some authors as linked phase). 
Fig. 11 shows an ALOS-1 interferogram with 3.5 years temporal base
line. The observed and the reconstructed interferograms (Fig. 11a and b) 
are very similar except at the south and east of the caldera, where the 
observed interferogram is incoherent but not the reconstructed inter
ferogram as shown by the high-frequency noise in the interferogram 
difference (Fig. 11c). This area is forested and characterized by a low 
spatial coherence (Fig. 11d and e). This example, although with an 
extreme temporal baseline, demonstrates how the network inversion 
filters out the temporal decorrelation noise (Ansari et al., 2017; Guar
nieri and Tebaldini, 2008; Pepe et al., 2015). 

There is a difference in the north of the decorrelated area (yellow 
colors marked by white rectangle in Fig. 11c). These areas are lightly 
vegetated (Fig. 11e), the discrepancy in phase is likely caused by the soil 
or tree moisture considering its sensitivity to L-band SAR data (De Zan 
and Gomba, 2018) and land cover (Fig. 11e). 

Fig. 8. Comparing InSAR with GPS. (a) Total displacements in LOS direction 
for Sierra Negra caldera from InSAR and GPS during 13 December 2014 - 19 
June 2018. Circles: GPS stations colored by displacement. Positive displace
ments indicate motion towards the satellite. (b) Displacement time-series from 
InSAR and GPS relative to GV01 (shifted for display). Blue GPS error bars: three 
sigma uncertainties (in LOS direction propagated from the uncertainties in east, 
north and up direction). 12 April 2015 is selected as the common reference 
because this SAR acquisition is characterized by small residual phase RMS. Gray 
circles: unreliable InSAR time-series with temporal coherence less than 0.7 
(masked out by default). (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.) 

Fig. 9. Assessment of unwrapping error correction. Temporal coherence of the Sentinel-1 dataset from the network inversion of the interferogram stack (a) before the 
unwrapping error correction, (b) after the unwrapping error correction with bridging and (c) with bridging and phase closure. Black squares indicate the refer
ence point. 
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Fig. 10. Impact of network modification on temporal coherence for ALOS-1 dataset. (a) Network configuration, (b) temporal coherence and (c) reliable pixels with 
temporal coherence � 0.7 from inversion of small baseline network with uniform weighting. (d-f): same as (a-c) but from inversion of a network obtained by 
coherence-based network modification with inverse-variance weighting. Lines in (a) and (d) represent interferograms colored by the average spatial coherence within 
the Sierra Negra caldera (blue rectangles in (b and e)). Black squares in (b and e) indicate the reference point. (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.) 

Fig. 11. Spatial inspection of the inverted raw phase. (a) Observed interferometric phase and (b) reconstructed phase from the inverted raw phase time-series; (c) 
difference between (a) and (b); (d) observed spatial coherence; (e) optical image from Google Earth. The ALOS-1 interferogram has temporal baseline of 3.5 years (2 
March 2007 - 10 September 2010) and perpendicular baseline of 219 m. In (a) part of the caldera is masked out during phase unwrapping because of low coherence. 
White rectangles in (c and e): areas likely affected by soil or tree moisture. The phase is wrapped into ½ � π; πÞ for display. 
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5.4. Noisy SAR acquisitions 

Noisy acquisitions with severe atmospheric delays or decorrelation 
noise could potentially bias the estimation of topographic residuals, the 
average velocity or coefficients of any temporal deformation model. In 
the routine workflow, they are automatically identified and excluded in 
the estimations. 

Fig. 12 shows the impact of noisy acquisitions on the average ve
locity estimation for the L-band ALOS-1 dataset. Several acquisitions are 
severely contaminated by ionospheric streaks and identified by high 
residual phase RMS value (gray bars in Fig. 12a). Comparing the esti
mated average velocities from displacement time-series with noisy ac
quisitions (Fig. 12b) and without noisy acquisitions (Fig. 12c) reveals 
that excluding the noisy acquisitions significantly reduces the estimation 
bias. The residual phase time-series bφresid estimated from equation (13) 
is shown in supp. Fig. S7. 

6. Discussion 

6.1. Phase corrections in the time-series domain 

In the presented approach the phase corrections are applied in the 
time-series domain in contrast to other approaches where they are 
applied in the interferogram domain (Agram et al., 2013; Berardino 
et al., 2002). Both types of approaches give identical results, but the 
time-series domain approach has two advantages: first, it is computa
tionally more efficient because it uses N-1 unwrapped phases, in contrast 
to the much larger number of interferograms for the interferogram 
domain approach (up to N� ðN � 1Þ=2 for all possible interferograms); 
second, the impact of the corrections is readily evaluated in both the 
spatial and temporal domains. 

Fig. 13 upper panel (a) shows how the displacement at one acqui
sition is obtained by subtracting the estimations of the tropospheric 
delay, of the phase ramp and of the topographic residual from the raw 
phase. The time-series for a pixel along the southern coast of Isabela 
demonstrates the power of the corrections (Fig. 13b). The area experi
enced a sill intrusion in March 2017 (dashed line in Fig. 13b; Bagnardi 
and Hooper, 2018). The permanent ground displacement of 5 cm in LOS 
direction is difficult to discern in the raw phase time-series but becomes 
visible after applying the three corrections. Note that this pixel is far 
away from the intrusion in the first stage and only affected by the 
intrusion in the second stage, thus showing only one jump in the 
displacement time-series. For Sentinel-1 the topographic residuals are 
small (less than 4 cm in this dataset) due to the small orbital tube but this 
is different for other sensors (Fattahi and Amelung, 2013). 

6.2. Order of phase corrections 

In our proposed workflow the tropospheric delay correction using 
external independent GAMs should be applied first. The order of the 
other phase corrections is interchangeable because they exploit different 
aspects of the InSAR data. Empirical tropospheric delay correction based 
on delay-elevation ratio removes signals correlated with the topog
raphy. Phase deramping removes signals correlated with the spatial 
coordinates (linearly or quadratically). Topographic residual correction 
removes signals correlated in time with the perpendicular baseline. We 
recommend applying phase deramping before topographic residual 
correction so that the estimated step functions do not have to be 
deramped again. 

6.3. Interferogram network redundancy 

We consider stacks of Sentinel-1 interferograms from section 5 with 
different numbers of sequential connections for each acquisition to 
assess the impact of network redundancy on the estimation of (i) the 
displacement time-series and (ii) the temporal coherence (the reliability 
measure). We compute the RMSE of the InSAR time-series at the GPS 
stations within Sierra Negra caldera, assuming that the GPS measure
ments are the truth (see section 5.1; Fig. 14) and examine the temporal 
coherence for these pixels. We also count the number of reliable pixels 
(spatial coverage; temporal coherence � 0.7). 

The average RMSE (bars in Fig. 14; GV10 excluded) decreases (im
proves) with the increasing number of sequential connections rapidly 
until 5 connections then slowly until the reduction becomes negligible. 
The temporal coherence (orange triangles in Fig. 14) stays at high values 
(above 0.9) for all stations, except for GV10, for which it decreases to 
0.65 at 4 connections and to 0.24 at 20 connections. The low temporal 
coherence indicates that this is not a reliable pixel. It also has a relatively 
large RMSE (Fig. 8b in section 5.1). This example shows that increasing 
network redundancy leads to improved identification of reliable pixels. 
For this specific dataset, a network of interferograms with 5 connections 
gives a good balance among precision, reliability and spatial coverage 
(green dots in Fig. 14). 

We note that in this case decorrelation noise is the dominant error 
source. Unwrapping errors remaining after unwrapping error correction 
were excluded by removal of affected interferograms using coherence- 
based network modification (see supp. Fig. S8). Still remaining un
wrap errors were suppressed by the weighting. Thus, more observations 
always help to reduce the stochastic decorrelation noise, resulting in a 
more accurate estimation of the displacement measurement (lower 
RMSE) and of the reliability measure (temporal coherence). 

As a practical implication, more interferograms are always preferred 
if the computing capacity allows (Ansari et al., 2017). Since we cannot 
get the estimated spatial coherence before the interferogram generation 

Fig. 12. Impact of noisy acquisitions on velocity 
estimation. (a) RMS of the residual phase estimates 
bφresid for each acquisition in the ALOS-1 dataset 
calculated using equation (14). Dashed line: 
threshold (three times MAD of the RMS time-series 
by default). Gray bars: noisy acquisitions with RMS 
larger than the threshold. (b and c): estimated 
average LOS velocities from displacement time-series 
with and without noisy acquisitions, respectively. 
Velocities are wrapped into [-5, 5) cm/yr for display.   
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(due to the imperfect coherence model), generating a more redundant 
network provides room to exclude low coherent interferograms espe
cially those containing reliable regions with unwrapping errors and still 
keep the network redundancy (temporal coherence would always be one 
and meaningless if the system of network inversion is not over
determined, shown as orange triangles in Fig. 14 at 1 connection). In 
addition, a more redundant network could potentially lead to a better 
unwrapping error correction based on phase closure. Thus, we recom
mend using relatively relaxed interferogram selection thresholds (more 
connections in sequential networks, larger temporal and perpendicular 
baselines in small baseline networks) to generate more potentially 
coherent interferograms. 

6.4. Temporal coherence as the reliability measure 

We discuss the advantages and limitations of using the temporal 

coherence as the reliability measure. An advantage is that the temporal 
coherence is a more robust reliability measure for the inverted raw 
phase time-series compared to the average spatial coherence, because 
the temporal coherence indicates not only the overall decorrelation 
noise, but also the overall level of non-closing interferogram triplets. 
Non-closing triplets may be caused by the interferometric phase residual 
(equation (1)), including decorrelation noise, possible phase- 
unwrapping errors and interferometric phase contributions due to 
changes in the scatterers. An example of the latter is the interferometric 
phase caused by changes in the dielectric properties of subsurface 
scatterers in the result of soil moisture changes (De Zan et al., 2014; 
Morrison et al., 2011). Fig. 15a shows how the temporal coherence is 
affected by unwrapping errors. In the absence of unwrapping errors 
(pixels on Isabela island) the temporal and average spatial coherence are 
correlated but not when unwrapping errors are present (pixels on Fer
nandina and Santiago islands). The improvement in temporal coherence 
by phase-unwrapping error correction is illustrated in Fig. 9. 

However, a limitation is that the temporal coherence cannot capture 
temporal variations of the reliability of the phase time-series. Fig. 15b 
and c show the displacement time-series and coherence matrix of a pixel 
that was covered by a lava flow during the 2015 Wolf eruption (marked 
as a black triangle in Fig. 6). The surface change brings down the spatial 
coherence to 0.3 during May–July 2015 (red grids in Fig. 15c), resulting 
in coherent, connected interferogram networks only before and after the 
lava flow emplacement. This, however, has negligible impact on the 
temporal coherence. With a temporal coherence of 0.94 the pixel is 
considered reliable although valid displacement measurements were 
possible only before and after the flow emplacement (after flow 
emplacement the pixel shows surface subsidence due to lava cooling). A 
three-dimensional reliability measure such as the covariance matrix of 
decorrelation noise (Agram and Simons, 2015) is more meaningful in 
this case of partially coherent scatterers, but this is beyond the scope of 
this manuscript. 

Fig. 13. Illustration of phase correc
tions in the time-series domain: (a) at 
one acquisition (12 May 2016; the 
reference date is 27 September 2015); 
(b) at one pixel (southern flank of 
Cerro Azul, marked as a triangle in the 
upper panel; [W91.1917�, S1.0352�]). 
Displacements are obtained by sub
tracting the estimated tropospheric 
delay, phase ramp and topographic 
residual from the raw phase (equation 
(4)). Black squares in (a) indicate the 
reference point. Data are wrapped into 
½ � π; πÞ for display. All range change 
histories in (b) start at zero but are 
shifted for display. The permanent 
displacement due to a sill intrusion in 
March 2017 (marked as dashed line) is 
visible after phase corrections.   

Fig. 14. Average RMSE of InSAR time-series (black bars), temporal coherence 
(orange triangles) at GPS stations and number of reliable pixels (green dots) as 
functions of the number of sequential connections. Dotted orange line: temporal 
coherent threshold of 0.7. (For interpretation of the references to color in this 
figure legend, the reader is referred to the Web version of this article.) 
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6.5. Comparing MintPy with GIAnT 

We compare the performance of the MintPy routine workflow with 
the classic SBAS approach (Berardino et al., 2002), the New Small 
Baseline Subset (NSBAS) approach (Doin et al., 2011; L�opez-Quiroz 
et al., 2009) and the Multiscale InSAR Time-Series approach (Hetland 
et al., 2012), as implemented in the Generic InSAR Analysis Toolbox 
(GIAnT) (Agram et al., 2013) and referred to as G-SBAS, G-NSBAS, and 
G-TimeFun, respectively. We use the Gal�apagos Sentinel-1 dataset and a 
spatial coherence threshold of 0.25 (as commonly done with GIAnT, 
Agram and Simons, 2015) for all approaches including MintPy. Tropo
spheric delays are corrected from the ERA-Interim model using the 
PyAPS software (Jolivet et al., 2011). 

In the following we discuss the differences between the four ap
proaches (summarized in Table 1). We demonstrate the impact on the 
displacement time-series using three pixels (Fig. 16i): a high coherent 
pixel (pixel A), a low coherent pixel (pixel B) and a high coherent pixel 
with unwrapping errors and complex displacement (pixel C). The 
coherence matrices of the three pixels are shown in Fig. 16j. For the high 
coherent pixel A, all approaches give nearly identical results (Fig. 16i). 

6.5.1. Initial pixel selection 
MintPy selects pixels which have for every SAR acquisition a mini

mum number of coherent interferograms (1 by default); G-SBAS and G- 
TimeFun select pixels that are coherent in all interferograms; while G- 
NSBAS selects pixels with a predefined total minimum number of 
coherent interferograms (we use a minimum of 300 out of 475). This 
leads to differences in the spatial measurement coverage between the 
four approaches (Fig. 16e–h). Compared with G-SBAS and G-TimeFun, 
MintPy has better coverage within the calderas of Alcedo and Fernan
dina and along Alcedo’s flank. G-NSBAS has the best spatial coverage 
among all approaches. The spatial coverages are shown by the 

distribution of the number of interferograms for pixels selected by the 
four approaches (Fig. 16a–d). 

6.5.2. Weighted network inversion 
MintPy uses weighting (the inverse-variance by default) during the 

network inversion while the other three approaches in GIAnT do not. 
The impact on the estimated displacement time-series is not negligible 
when there is significant quality variation among the observations. One 
example is the displacement time-series of the low coherent pixel B in 
Fig. 16i. This is confirmed by the nearly identical result between G- 
NSBAS and MintPy without weighting (see supp. Fig. S9a). Note that the 
asymmetric red grids along the horizontal black grids in Fig. 16j indicate 
the masked out interferogram due to spatial coherence thresholding, 
thus, only MintPy and G-NSBAS give estimation results. 

6.5.3. Unwrapping error correction 
MintPy supports bridging and phase closure methods to correct 

unwrapping errors in the interferograms, which GIAnT does not. Un
wrap errors introduce bias in the estimated phase ramps and displace
ment time-series. One example is the difference of the displacement 
time-series on pixel C in Fig. 16i between MintPy and G-(N)SBAS. This 
is confirmed by the nearly identical result between G-(N)SBAS and 
MintPy without unwrapping error correction (see supp. Fig. S9b). The 
bias introduced by unwrapping errors is also evident in the velocity field 
at the west side of Fernandina volcano (Fig. 16e–h). 

6.5.4. No deformation model 
MintPy and G-SBAS do not assume temporal deformation model in 

network inversion. G-NSBAS and G-TimeFun require temporal defor
mation models: G-NSBAS uses the model only when the network is not 
fully connected in order to link multiple subsets of interferograms; while 
G-TimeFun requires over-complete, potentially redundant models, 

Fig. 15. Advantage and limitation of temporal coherence as reliability measure. (a) Temporal coherence versus average spatial coherence for land pixels of the 
Sentinel-1 dataset without unwrapping error correction. Dashed line: default temporal coherence threshold of 0.7. Three point clouds represent pixels on Isabela, 
Fernandina and Santiago islands. (b and c) Displacement time-series and the diagonal section of coherence matrix of a pixel on the lava flow of the 2015 Wolf 
eruption located at [W91.2838�, N0.0232�] (black triangle in Fig. 6). Reference pixel is located ~600 m to the west [W91.2891�, N0.0243�]. The coherence matrix is 
rotated 45� anticlockwise and shows the five diagonals below and above the main diagonal. Dashed lines: period of lava flow emplacement. 

Table 1 
Summary of the differences of time series analysis approaches in MintPy and GIAnT. All approaches use small baseline network of unwrapped interferograms and linear 
optimization time-series estimator.  

Aspect MintPy G-SBAS G-NSBAS G-TimeFun 

initial pixel selection a minimum number of coherent interferograms for 
every acquisition 

coherent in all 
interferograms 

a total minimum number of coherent 
interferograms 

coherent in all 
interferograms 

weighted inversion yes no no no 
unwrapping error 

correction 
bridging/phase closure no no no 

posterior quality 
assessment 

yes no no no 

prior deformation 
model 

no no yes yes 

phase correction 
operation 

time-series domain interferogram domain interferogram domain interferogram domain  
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which can be added manually by user (Agram et al., 2013; Hetland et al., 
2012). Thus, with the default configuration in this case, G-TimeFun did 
not resolve the displacement jump due to the September 2017 Fernan
dina eruption (pixel C in Fig. 16i). 

6.5.5. Reliable pixel selection 
In contrast to approaches in GIAnT, MintPy assesses the quality of the 

inverted phase time-series using temporal coherence and masks out 
unreliable pixels (gray area in Fig. 16a). We note that a higher temporal 
coherence threshold (0.8 instead of the default 0.7) is used because the 
spatial coherence thresholding reduces the number of interferograms for 
unreliable pixels, bringing up the temporal coherence value. 

7. Summary and conclusions 

We have reviewed the mathematical formulation for the weighted 
network inversion and for the post-inversion phase corrections for time 
series analysis of small baseline InSAR stacks. In contrast to some 
persistent scatterer methods, the presented approach does not require 
prior deformation models or temporal filtering and is therefore well 
suited to extract nonlinear displacements. Reliable pixels are identified 
using the temporal coherence. Noisy acquisitions with severe atmo
spheric turbulence are identified using an outlier detection method 
based on the median absolute deviation of the residual phase RMS and 
are excluded during the estimations of topographic residual and average 
velocity. 

Our workflow includes two methods to correct for, and one method 
to exclude remaining phase-unwrapping errors. The first unwrapping 
error correction method is bridging. This method uses MST bridges to 
connect the reliable regions of each interferogram, assuming that the 
phase differences between neighboring regions are less than π rad in 

magnitude. This method is particularly well-suited for islands and/or 
areas with steep topography. The second method is the phase closure 
method. This method exploits the conservativeness of the integer am
biguities of interferogram triplets. A sparse solution for the phase- 
unwrapping integer ambiguity is obtained using the L1-norm regular
ized least squares approximation. Coherent phase-unwrapping errors 
can be identified using the distribution of the number of triplets with 
non-zero integer ambiguity of the closure phase. Best results are ob
tained by combining these two methods. 

The method to exclude remaining coherent phase-unwrapping errors 
is coherence-based network modification. In this approach affected in
terferograms are identified and excluded using a threshold of average 
spatial coherence calculated over a customized area of interest that in
cludes the low coherent areas surrounding the areas with coherent 
phase-unwrapping errors. 

We have applied the routine workflow to ALOS-1 and Sentinel-1 data 
acquired over the Gal�apagos volcanoes. The InSAR results show very 
good agreement with independent GPS measurements. A comparison 
with the algorithms implemented in the GIAnT software shows similar 
performance in the high coherent areas but superior performance in the 
low coherent areas and the high coherent areas with phase-unwrapping 
errors or complex displacement because of unwrapping error correction, 
weighted network inversion, initial and reliable pixel selection using 
temporal coherence. 

We investigated how some configurations of the routine workflow 
affect the precision and accuracy of the InSAR measurement using real 
and/or simulated data. The conclusions are:  

1. Inverse-variance weighting gives the most robust and one of the best 
performances for network inversion among four different weighting 

Fig. 16. Comparison of MintPy with 
GIAnT approaches for the Sentinel-1 
dataset for the Gal�apagos. (a-d) Dis
tribution of the number of interfero
grams for pixels used (number of 
pixels for each interferogram bin) by 
the four time series approaches on the 
entire Isabela and Fernandina islands 
in log scale. Gray area in (a): unreli
able pixels (pixels processed but dis
carded because of low temporal 
coherence). (e-h) LOS velocity esti
mated from the displacement time- 
series produced by the four time se
ries approaches on Fernandina and 
Alcedo volcano. Velocities are wrap
ped into [-2, 2) cm/yr for display. 
Black squares: reference point. (i) 
Displacement time-series for pixels 
marked in (e-h). (j) Coherence matrix 
for pixels in (i) (rotated to make the 
matrix diagonal line horizontal; only 
showed the main diagonal and the 
five diagonals below and above; only 
showed the data from 7 May 2017 - 
19 June 2018). The lower and upper 
half: interferograms before and after 
phase masking, respectively. The 
asymmetric red grids between the 
upper and lower half for pixel B 
indicate masked out interferograms 
with spatial coherence < 0.25. (For 
interpretation of the references to 
color in this figure legend, the reader 
is referred to the Web version of this 
article.)   
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functions: uniform, coherence, inverse-variance and Fisher infor
mation matrix.  

2. For interferogram networks with 3, 5 and 10 sequential connections, 
the phase closure method fully corrects for phase-unwrapping errors 
if less than 5, 20 and 35% of the interferograms are affected by 
phase-unwrapping errors, respectively (with maximum errors of 2 
cycles). This shows that the phase closure method performs better for 
more redundant networks.  

3. Increasing the network redundancy improves the network inversion 
and the estimation of temporal coherence (as long as phase- 
unwrapping errors have been corrected or excluded), resulting in 
more accurate estimation of the displacement time-series and iden
tification of reliable pixels. Thus, we recommend using more con
nections in sequential networks, and to use larger temporal and 
perpendicular baselines in small baseline networks.  

4. The order of the InSAR-data-dependent phase corrections (the 
empirical tropospheric delay correction based on the delay-elevation 
ratio, topographic residual correction and phase deramping) is 
interchangeable and has negligible impact on the noise-reduced 
displacement time-series.  

5. Temporal coherence is a more robust reliability measure than 
average spatial coherence because it accounts for phase-unwrapping 
errors. However, it does not capture temporal variations of the reli
ability of the phase time-series, limiting its usefulness for partially 
coherent scatterers. 
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Appendix A. List of acronyms and symbols 

Table A1 
List of acronyms  

DS Distributed scatterer. 
FIM Fisher information matrix. 
GAM Global atmospheric model. 
GIAnT Generic InSAR Analysis Toolbox. 
G-SBAS Small baseline subset in GIAnT. 
G-NSBAS New small baseline subset in GIAnT. 
G-TimeFun Multiscale InSAR Time-Series in GIAnT. 
LASSO Least absolute shrinkage and selection operator. 
LOS Line of sight. 
MAD Median absolute deviation. 
MST Minimum spanning tree. 
PDF Probability density function. 
PS Persistent scatterer. 
RMS Root mean square. 
RMSE Root mean square error. 
SBAS Small baseline subset. 
SLC Single look complex. 
SNAPHU Statistical-cost, Network-flow Algorithm for Phase Unwrapping. 
WLS Weighted least squares.   
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Table A2 
List of symbols  

Symbol Parameter 

A Design matrix for network inversion in size of M� ðN � 1Þ.  
C Design matrix for the closure phase of interferogram triplets. 
D Design matrix for the constraint of unwrapping error-free interferograms. 
H All-one column matrix in size of M� 1.  
L  Number of looks in range and azimuth directions in total. 
M Number of interferograms. 
N Number of SAR acquisitions. 
T  Number of interferogram triplets. 
U Matrix of the phase-unwrapping integer ambiguity in size of M� 1.  
W Weight matrix for network inversion in size of M� M.  
Cijk  Closure phase of the interferogram triplet formed from acquisitions at ti, tj, and tk. 

Cijk
int  Integer ambiguity of Cijk .  

Tint  Number of triplets with non-zero Cijk
int among all triplets.  

Δϕj  Interferometric phase of the jth unwrapped interferogram. 

Δϕj
ε  Interferometric phase residual of the jth unwrapped interferogram. 

Δϕ  Vector of the interferometric phase of all interferograms. 
Δϕε  Vector of the interferometric phase residual of all interferograms. 
ϕi  Raw phase between the ith and the 1st acquisition. 
ϕ  Vector of raw phase of all acquisitions (raw phase time-series). 
bϕ  The estimated vector of raw phase time-series. 

ϕi
dis  Phase due to the displacement between the ith and the 1st acquisition. 

bϕ
i
tropo  

Estimated tropospheric delay between the ith and the 1st acquisition. 

bϕ
i
geom  

Estimated geometrical range difference between the ith and the 1st acquisition caused by the non-zero spatial baseline. 

ϕi
resid  Residual phase remained between the ith and the 1st acquisition. 

ϕresid  Vector of the residual phase of all acquisitions (residual phase time-series) 
bϕresidðpÞ Estimated vector of the residual phase time-series on pixel p. 

δLi
p  Integrated absolute single path tropospheric delay between the ith and the 1st acquisition on pixel p in meters. 

bϕ
i
tropðpÞ

Estimated phase of the relative double path tropospheric delay between the ith and the 1st acquisition on pixel p with respect to pixel ref. 

σ2
Δϕj  

Variance of the interferometric phase of the jth interferogram. 

γj  Spatial coherence of jth interferogram. 
γtemp  Temporal coherence. 
λ  Radar wavelength in meters. 
zε  Topographic residual in meters.  

Appendix B. Supplementary data 

Supplementary data to this article can be found online at https://doi.org/10.1016/j.cageo.2019.104331. 
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