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Abstract
Tropospheric delay is one of the dominant error sources of interferometric synthetic aperture radar when measuring ground 
displacement. Although many methods have been presented for the correction of tropospheric effects, a large portion of them 
(such as the numerical weather models and the topography-correlated analysis methods) can only be used to correct the strati-
fied delays (i.e., topography-related delays), and it is still intractable for mitigating the turbulent effects. Considering that the 
approximate displacement extent over an interested region often can be known based on some prior geophysical or geological 
information, we present here a new method to mitigate the effects of atmospheric turbulence by fusing multiple phase dif-
ferences (MPDs) between the pixel of interest and those pixels whose displacement can be ignored or can be known based 
on external displacement datasets (e.g., from other geodetic observations). Our method involves estimating the stochastic 
model, i.e., variance–covariance matrix, of the MPDs for each pixel and then reconstructing the ground displacement pixel 
by pixel using a proposed minimum variance-based linear estimator. Two advantages of the proposed method are that: (1) 
no external atmospheric data are required; (2) uncertainties of the reconstructed displacements can be provided as well. In 
addition, our method is implemented interferogram by interferogram, so we do not need time series of InSAR datasets. The 
performance of the proposed approach is tested by using both simulated datasets and the real data over Mexico City regions, 
and the experimental results show that our method can mitigate the turbulent atmosphere efficiently and robustly, which is 
of great interest to a wide community of geodesists and geophysicists.

Keywords Interferometric synthetic aperture radar (InSAR) · Atmosphere correction · Turbulent troposphere mitigation · 
Minimum variance estimator

1 Introduction

Interferometric synthetic aperture radar (SAR) (InSAR) 
has been proved to be a powerful technology for measuring 
ground surface displacement with wide spatial coverage, 
high spatial resolution, and all-weather and day-and-night 
working capability (Massonnet and Feigl 1998; Lu et al. 
2007; Chen et al. 2017). Although significant progresses 
have been made in the past two decades to improve the 

measurement precision, the tropospheric delays (i.e., the 
radar propagation error due to neutral atmosphere), which is 
mainly caused by the variation of temperature, pressure, and 
relative humidity both in time and in space, still remain one 
of the dominate error sources for accurately measuring the 
ground displacements (Zebker et al. 1997; Hanssen 2001; 
Ding et al. 2008; Kinoshita et al. 2012; Cao et al. 2017).

The tropospheric delays can be separated into the stratified 
and the turbulent components in the spatial domain, based 
on their physical origin (Hanssen 2001). Many methods have 
been presented for the correction of tropospheric effects; how-
ever, a large portion of them can only be used to correct the 
effects of stratified atmosphere, like the numerical weather 
model-based methods (Foster et al. 2006; Jolivet et al. 2011, 
2014) and the topography-correlated analysis algorithms (Elli-
ott et al. 2008; Lin et al. 2010; Xu et al. 2011; Bekaert et al. 
2015). External water vapor dataset (like MERIS/MODIS- and 
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GPS-based water vapor dataset)-based methods can be used 
to theoretically mitigate the total effects of troposphere (both 
stratified and turbulent atmospheres), while the mapping of the 
delay from zenith to radar LOS (line of sight) is based on the 
assumption that there are no heterogeneities within the hori-
zontal layers (Onn 2006), which is in conflict with the spatial 
heterogeneity characteristic of the turbulent atmosphere. In 
addition, GPS-based correction is often limited by the low 
spatial density of the stations (Li et al. 2004), and the MERIS/
MODIS satellites only work during daytime and their meas-
urements can be easily polluted by cloud (Li 2005). Time-
series InSAR (TS-InSAR)-based filtering methods are another 
type of choice for the correction of the turbulent atmosphere 
(Ferretti et al. 2001; Berardino et al. 2002; Hooper 2008), but 
determination of the filtering window length and the weighting 
strategy is not straightforward due to the fact that the turbulent 
atmospheric delay is usually not Gaussian-distributed in the 
temporal domain (Gong et al. 2015; Cao et al. 2017). There-
fore, how to correct the effects of turbulent atmosphere is still 
an intractable problem.

In this paper, we present a new method to mitigate the 
effects of turbulent atmosphere by fully exploiting those 
available displacement-known pixels (i.e., pixels with known 
displacement or within non-deforming area). Our method 
aims to mitigate the turbulent effects by fusing multiple 
phase differences (MPDs) between the pixel of interest and 
the pixels with displacement known, including those pix-
els: (i) located in a stable, non-deforming area, or (ii) with 
displacements known from other geodetic observations. 
The three steps of the method are: (i) to model the spatial 
variation of the turbulent atmosphere field by estimating 
its structure function; (ii) to estimate the stochastic model, 
i.e., variance–covariance matrix (VCM), of the MPDs for 
each pixel; and (iii) to reconstruct the ground displacement 
pixel by pixel using a novel minimum variance-based lin-
ear estimator. The method provides the uncertainties of the 
reconstructed displacements as well. It is implemented inter-
ferogram by interferogram and does not need time series of 
InSAR datasets.

The paper is structured as follows: In Sect. 2, we intro-
duce the proposed new method in detail. The performance of 
our new method is tested by using both the simulated data-
sets and the real Sentinel-1A data over Mexico City region 
in Sects. 3 and 4, respectively. In Sect. 5, we discuss the 
influences of some factors on the new method, and finally in 
Sect. 6, we draw our conclusions and provide some outlooks.

2  Methodology

In this section, we propose a new method to mitigate the 
turbulent atmospheric delays in an interferogram of inter-
est. As to the possible stratified atmospheric delays (i.e., 

topography-related atmosphere), we present to correct this 
part of delays by firstly modeling the mathematical rela-
tionship between the InSAR observations and the related 
elevations from an external DEM, based on the well-studied 
Onn model (Onn and Zebker 2006; Xu et al. 2011), and then 
removing the modeled stratified components from the origi-
nal InSAR observations. In order to weaken the effects of 
possible deformations and decorrelation noises for modeling 
the stratified delays, we recommend masking those signifi-
cantly deforming and lowly coherent areas when best-fitting 
the model parameters. In the following analysis, we assume 
that the stratified atmosphere has been corrected, and con-
sider that the major components of the atmospheric delays in 
the interferogram of interest are the turbulent delays.

2.1  Definition of multiple phase differences

We consider that n displacement-known pixels have been 
selected from the whole interferogram; then, we can get n 
phase differences for an interested pixel p within unknown 
deformation area, and we write each phase difference as the 
sum of three terms: (1) displacement, (2) spatial correlated 
component, and (3) the spatial independent term

where φp(ri) is the phase difference between the interested 
pixel p and the ith displacement-known pixel ri; dp and dri 
represent the LOS displacements at pixel p and the pixel ri, 
respectively, that dp is the primary interested parameter that 
we need to estimate and dri can be obtained from the prior 
displacement information (equals zero or can be derived 
from external displacement datasets); sp and sri account for 
the spatially correlated components at the two pixels, respec-
tively, which should be mainly associated with the atmos-
pheric delays; and ep and eri denote the spatially independent 
noises at the two pixels, which is mainly related to the spatial 
and temporal decorrelation noises. We illustrate the n MPDs 
of pixel p as Fig. 1.

2.2  Error analysis of multiple phase differences

As the only parameter of interest in our research is the dis-
placement dp, here we refer to other components in the phase 
difference as errors. Based on each phase difference, we can 
get an approximate displacement for the pixel of interest

where ɛp(ri) means the estimation error of d̂p
(
ri
)
 (i.e., the 

difference between d̂p
(
ri
)
 and dp). By using n MPDs, we 

can get n approximate values of the displacement dp, and the 
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)
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vector of the n approximate displacements at pixel p can be 
written as Lp =

[
d̂p
(
r1
)
, d̂p

(
r2
)
,… , d̂p

(
rn
)]T . From Eq. (1) 

and Eq. (2), we can find that ɛp(ri) can be presented as:

where Δdri accounts for the prior displacement error of 
the ith displacement-known pixel, and it is caused by the 
inconsistency between the real displacement phase in InSAR 
at pixel ri and the arbitrary displacement value (which is 
assumed to be zero or derived from external displacement 
datasets). This inconsistency can be related to two facts: 
firstly, absolutely non-deforming is not possible in reality; 
thus, the selected displacement-known pixels in the so-called 
non-deforming areas are usually deformed to some degree, 
even the deforming magnitudes could be very small; sec-
ondly, other geodetic techniques derived displacements are 
always not equal to the real displacements in InSAR, due to 
the uncertainty of the external dataset itself and the intrinsic 
differences between InSAR and other geodetic techniques, 
for example InSAR displacement usually means an average 
value of the whole pixel (e.g., 20m × 20m ), while pointwise 
displacement of GPS or leveling is associated with one geo-
metrical ground point. For the spatial correlated errors, here 
we consider that it is mainly caused by the effect of turbulent 
atmosphere, as we assume that the stratified atmosphere can 
be corrected by using weather models (Jolivet et al. 2014) 
or topography correlation methods (Xu et al. 2011; Bekaert 
et al. 2015), and we also do not consider the effects of iono-
sphere in this research. As to the spatial independent noises, 
we simply take it as the decorrelation noise in our following 
analysis.

(3)!p
(
ri
)
= Δdri +

(
sp − sri

)
+
(
ep − eri

)

2.3  Stochastic modeling for multiple phase 
differences

Considering that (i) different phase differences derived dis-
placements (Eq. 2) could have different uncertainties (i.e., 
qualities); (ii) the n approximate displacements that derived 
from MPDs are correlated with each other, in this section, 
we estimate the stochastic model, i.e., variance–covariance 
matrix (VCM), of the MPDs to provide a reasonable weight-
ing strategy for fusing the n MPDs.

As the three error terms in Eq. (3) can be considered to 
be independent, we can write the variance of the ith MPD-
derived displacement as

where Var(·) represents the operation of evaluating the vari-
ance, !2

dp

(
ri
)
 represents the variance of the ith MPD-based 

displacement ( ̂dp
(
ri
)
 ), and the covariance between the ith 

and the jth MPD-derived displacements ( ̂dp
(
ri
)
 and d̂p

(
rj
)
 ) 

can be written as:

where Cov(·) denote the operation of estimating the covari-
ance; !2

dp

(
ri, rj

)
 accounts for the covariance between d̂p

(
ri
)
 

and d̂p
(
rj
)
 . In order to estimate the above variance–covari-

ance components ( !2
dp

(
ri
)
 and !2

dp

(
ri, rj

)
 ), we should estimate 

the variance of each component, respectively.
As to the stochastic model of the prior displacement error 

( Δdri ), it is quite difficult to model in a routine mathematical 
way in practice. Therefore, we will not consider the stochas-
tic model of this part in the following analysis; instead, we 
would analyze the effects of these errors in the discussion 
part (see Sect. 5.3). Here we would focus on stochastic mod-
eling for the turbulent atmospheric delays and the decorrela-
tion noises.

2.3.1  Variance–covariance components estimation 
for the turbulent atmospheric delays

The spatial variation characteristic of atmospheric delay 
(i.e., spatially related noises) has been systematically studied 
in the previous researches (Hanssen 2001; Emardson et al. 
2003; Knospe and Jónsson 2010; Cao et al. 2014, 2017). The 
intrinsic hypothesis, which assumes the variance and the 
expectation are constant for each realization of the random 
field, is commonly used to estimate the structure function 
(i.e., spatial variance model) (Cressie 1990; Hanssen 2001). 
In addition, according to the spatial variation characteristic 

(4)!2
dp

(
ri
)
= Var

(
Δdri

)
+ Var

(
sp − sri

)
+ Var

(
ep − eri

)

(5)

!2
dp

(
ri, rj

)
= Cov

(
Δdri ,Δdrj

)
+ Cov

[(
sp − sri

)(
sp − srj

)]

+ Cov
[(
ep − eri

)(
ep − erj

)]

Fig. 1  Illustration of multiple phase differences (MPDs)
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of atmospheric delay, we can divide the variation into isot-
ropy and anisotropy (Knospe and Jónsson 2010; Cao et al. 
2014). Isotropy means magnitude of the variance only 
depends on the distance between two pixels, while anisot-
ropy implies that the variance is related to both the distance 
and the direction (i.e., angle of the line between two pixels). 
Here we estimate the variance–covariance components of 
the turbulent atmosphere [see Eqs. (4) and (5)] based on 
the intrinsic isotropic hypothesis. The variance of InSAR 
atmospheric delays can be represented by Hanssen (2001) 
and Emardson et al. (2003)

where hp,ri means the distance between the interested pixel 
and the ith displacement-known pixel; s(x) represents the 
magnitude of the turbulent atmospheric delay at position x; (
x, x + hp,ri

)
 accounts for any of the two location pairs, where 

the distance between them is hp,ri ; and E[·] is the operation 
of evaluating the expectation value, which we can estimate it 
by averaging all of the computed samples. There are several 
empirical models that can be used to estimate the structure 
function, such as the Matérn covariance model (Knospe and 
Jónsson 2010), the spherical model (Cressie 1990; Xu et al. 
2011; Cao et al. 2017), and the Bessel-type functional model 
(González and Fernández 2011). In our previous research 
(Cao et al. 2017), the spherical model was shown to be ade-
quate for modeling the atmosphere structure function, so we 
choose it again here as our candidate model. Based on the 
computed variance samples from Eq. (6), we can determine 
the best-fit parameters (nugget, rang, and sill) of the spheri-
cal model (or any other used model). Let us define the best-
fitted structure function as γ(h); then, we can get the variance 
of atmospheric delay (that between pixel ri and p) (Onn and 
Zebker 2006; Sudhaus and Jónsson 2009):

According to the variance–covariance propagation theory 
and the intrinsic hypothesis, the covariance of the atmos-
pheric delay in Eq. (5) can be written as:

Based on the estimated structure function γ(h), we can 
obtain:

(6)Var
(
sp − sri

)
= !2

dp

(
ri
)
= E

[(
s(x) − s

(
x + hp,ri

))2 ]

(7)Var
(
sp − sri

)
= !

(
hp,ri

)

(8)

Cov
[(
sp − sri

)(
sp − srj

)]

= Cov
(
sp , sp

)
+ Cov

(
sp , sri

)
+ Cov

(
sp , srj

)
+ Cov

(
sri , sri

)

=
1

2

[
Var

(
sp − sri

)
+ Var

(
sp − srj

)
− Var

(
sri − srj

)]

(9)
Cov

[(
sp − sri

)(
sp − srj

)]
=

1

2

[
!
(
hp,ri

)
+ !

(
hp,rj

)
− !

(
hri,rj

)]

It is easy to find that the covariance of the two different 
MPD-based turbulent atmospheric delays (see Eq. (9)) is 
determined by the spatial geometry (i.e., triangular) of the 
three positions (the two displacement-known pixels and the 
pixel of interest).

2.3.2  Spatial variance–covariance estimation 
of the decorrelation noises

The decorrelation noise of the interferometric phase is com-
posed of temporal decorrelation that is caused by the change 
in surface scattering properties over time, spatial decorrelation 
(i.e., geometric decorrelation), spectral misalignment due to 
the two different imaging positions of the satellite, and radar 
receiver thermal noise (Zebker and Villasenor 1992; Bamler 
and Hartl 1998). A common way to model the variance of 
decorrelation noises is by using the coherence value (between 
0 and 1) and the multi-look numbers of the interferometric 
phase (Rodriguez and Martin 1992; Bamler and Hartl 1998; 
Hanssen 2001; Li et al. 2008). Because we also consider that 
the decorrelation noises are spatially independent, we can eas-
ily derive the variance–covariance components of decorrela-
tion noises:

where !2
ep

 and !2
eri

 represent the variances of the two decor-
relation noises at pixel p and ri, which are estimated based 
on the coherences and the multi-look numbers (details can 
be found in Hanssen 2001). We can also find that the covari-
ance between any of the two different MPD-based decorrela-
tion noises is constantly equal to the decorrelation variance 
of the interested pixel.

2.3.3  Joint stochastic model estimation of the MPD-based 
displacements

After estimating the variance–covariance components of the 
atmospheric delays and the decorrelation noises, then we 
can get the joint stochastic model (i.e., variance–covariance 
matrix) of MPD-derived displacements, which can be writ-
ten as:

(10)Var
(
ep − eri

)
= !2

ep
+ !2

eri

(11)Cov
[(
ep − eri

)
⋅

(
ep − erj

)]
= !2

ep

(12)DLp
=

⎡
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⎢
⎢
⎢
⎢⎣

!2
dp

(
r1

)
!2
dp

(
r1 , r2

)
… !2

dp

(
r1 , rn

)

!2
dp

(
r2 , r1

)
!2
dp

(
r2

)
… !2

dp

(
r2 , rn

)

⋮

!2
dp

(
rn, r1

) ⋮

!2
dp

(
rn, r2

) ⋱

…

⋮

!2
dp

(
rn

)

⎤
⎥
⎥
⎥
⎥
⎥⎦
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From the above analysis, we can get the variance and covar-
iance components in DLp

The stochastic model ( DLp
 ) provides us with a wealth of 

quality and correlation description of the measurements that 
from different reference points. In Sect. 2.4, we present a mini-
mum variance-based linear estimator to reconstruct the ground 
displacement by incorporating the estimated stochastic model.

2.4  Displacement reconstruction by a minimum 
variance-based linear estimator

Based on the basic idea of the kriging-family algorithms, 
which have been widely used in geostatistics and problems of 
optimal spatial prediction (Cressie 1990; Kaymaz 2005; Koz-
iel et al. 2014; Wang et al. 2015), we propose to reconstruct the 
displacement by using the following linear estimator:

where d̂p means the reconstructed displacement of dp, and 
!p,1, !p,2,… , !p,n represent the weights of different measure-
ments. Considering the restriction of uniform unbiasedness 
( E

[
d̂p
(
ri
)]

= dp ), we get another condition:

It is easy to find that the key point of reconstructing the 
displacement d̂p is to estimate the optimal weight values. We 
build the idea of solving the optimal weights on minimizing 
the theoretical variance of d̂p

Based on the estimated stochastic model of Lp in Sect. 2.3, 
we can get

Jointly considering Eqs. (15)–(18), we describe our objec-
tive function as:

(13)!2
dp

(
ri
)
= "

(
hp,ri

)
+ !2

ep
+ !2

eri

(14)!2
dp

(
ri, rj

)
=

1

2

[
"
(
hp,ri

)
+ "

(
hp,rj

)
− "

(
hri,rj

)]
+ !2

ep

(15)d̂p =

n∑
i=1

[
d̂p
(
ri
)
× "p,i

]

(16)
n∑
i=1

!p,i = 1

(17)Var
{
d̂p
}
= Var

{
n∑
i=1

[
d̂p
(
ri
)
× "p,i

]
}

→ min

(18)Var
{
d̂p
}
= !p × DLp

× !
T
p

(19)F = !p × DLp
× !

T
p
− 2

(
!p × G − 1

)

where !p =
[
!p,1, !p,2,… , !p,n

]
 and G = [1, 1,… , 1]T (with 

dimensions of n × 1). By minimizing the objective function 
based on the method of Lagrange multipliers (Rockafellar 
1993), we can obtain

It is easy to derive the optimal estimation of !p from 
Eq. (20), and the reconstructed ground displacement that has 
a minimum variance can also be finally obtained by Eq. (18).

The workflow of the proposed approach can be summa-
rized as follows: (see Fig. 2): (i) we select displacement-
known pixels over the whole interferogram based on the 
prior deforming information and the coherence; (ii) we get 
the MPD-derived displacements and estimate the VCM of 
MPDs; (iii) we reconstruct the ground displacement by using 
the minimum variance-based linear estimator and evaluate 
the uncertainties of the estimated displacement. Both Step 
2 and Step 3 are processed pixel by pixel. For simplicity, we 
will refer to our method as MPD-InSAR (multiple phase 
difference-based D-InSAR approach).

3  Example using simulated data

3.1  Data simulation

As the major purpose of the proposed MPD-InSAR approach 
is to mitigate the turbulent atmosphere for accurately meas-
uring the ground deformation, here our simulations of the 
unwrapped interferograms were only made by the addition of 
the atmospheric turbulence and the deformations. We con-
sider a research region of 50 × 50 km2 with spatial resolution 
of about 200 m. The turbulent atmosphere was simulated 
based on the Kolmogorov turbulence theory, which pre-
dicts the one-dimensional power spectrum of the turbulence 
obeys a − 8/3 and − 5/3 power law (Hanssen 2001), three 
different atmospheric turbulence processes were simulated 
with power spectrum slopes of − 1.85, − 2.25, and − 2.65, 
respectively (Fig. 3a–c), and the 1D power spectrums of 
the simulations are presented in Fig. 3d. We consider a cir-
cular deforming region (i.e., region of interest) with zero 
deformations located at the central interferogram with radius 
of about 15 km (see the black circles in Fig. 3a–c). The 
deforming region would be masked for the estimation of the 
structure functions and the selection of the displacement-
known pixels.
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⎡
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3.2  Deformation reconstruction

In the above simulation, we do not consider the stratified 
atmospheric delays, so we can skip the step of correcting 
this part of delays at the beginning, and we start by esti-
mating the structure functions (i.e., variograms) using the 
spherical model of the three simulated turbulent fields from 

5000 randomly selected points outside of the area of inter-
est. The ranges (i.e., the maximum correlated distances) of 
the spherical models increase from 11 to 30.9 km (Fig. 4), 
consistent with the increase in the long-wavelength signals 
for the three turbulent random fields. We select four sets of 
known-displacement pixels (1, 20, 40, and 80 pixels) by ran-
dom from the non-deforming (i.e., stable) region (outside of 

Fig. 2  Workflow of the MPD-
InSAR approach

Fig. 3  a–c Simulations of the 
turbulent atmosphere with 1D 
power spectrums of − 1.85, 
− 2.25, and − 2.65, respectively; 
d the 1D power spectrums of 
the three turbulent fields
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the area of interest). Based on the estimated structure func-
tions and given the locations of the selected displacement-
known pixels, then we can estimate the variance–covariance 
matrixes (VCMs) of the MPDs for each pixel of interest.

The reconstructed displacements for the three turbulence 
cases and three different sets of known-displacement pix-
els together with their histograms are presented in Fig. 5. 
The case of one known-displacement pixel corresponds to 
conventional InSAR. It should be noted that the smaller the 
absolute value of the reconstructed deformation is the better, 
as we consider the real deformations over the deforming area 
are zero; thus, the residual deformations also can be consid-
ered as deformation biases or errors. We find that, compared 
with conventional InSAR results, the MPD-InSAR-derived 
deformation biases are decreased significantly, and the 
biases become smaller and smaller with the increase in the 
used known-displacement pixel numbers. The accuracy and 
precision of a measurement are given by the mean and STD 
of the measurement errors, respectively. We find that for 
MPD-InSAR with 80 known-displacement pixels compared 
with conventional InSAR the means decrease by 75%, 86%, 
and 91% and the STD decrease by 17%, 46%, and 42% for 
the three cases, respectively (Table 1). This shows that (1) 
the accuracy and precision of MPD-InSAR are improved 
compared to conventional InSAR, and (2) the accuracy and 
precision increase with the number of known-displacement 
pixels. The least improvements occur in Case 1 because the 
mitigation of small-scale turbulence requires a higher spatial 
density of known-displacement pixels than the mitigation of 
large-scale turbulence.

A transect through the area of interest illustrates how 
the reconstructed displacements and their standard devia-
tions depend on the number of displacement-known pixels 
(Fig. 6). The uncertainties (i.e., standard deviations) are 
calculated based on Eq. (18) with ! =

√
Var

{
d̂p
}

 . It is 

easy to find that the uncertainty of the conventional 
InSAR-derived displacement depends on the distance 
between the reference pixel and the pixel of interest, which 
can be calculated using the structure function directly. It 
can be seen that the mean absolute errors (MAEs) of the 
displacements (mean value of the absolute displacement 
biases) are smaller for MPD-InSAR than for conventional 
InSAR. The improvements are 52%, 50%, and 71% in the 
three cases, respectively.

We can see that uncertainties of the MPD-InSAR-derived 
deformations along the transact AA’ are obviously much 
smaller than those of the conventional InSAR, and we can 
find that, in case 1, all of the deformation uncertainties of 
the conventional InSAR are constant and equal to about 
0.42 cm; this is because of that all of the distances between 
the reference pixel and those pixels along the transect AA’ 
are larger than the “range” value of the structure function. 
As to the MPD-InSAR-derived deformation uncertainties, 
it can be seen that, in general, the more the displacement-
known pixels we used, the smaller the uncertainties tend 
to be.

4  Application to Mexico City Basin

4.1  Study area and data

Due to the extraction of groundwater in excess of natu-
ral recharge and consequent compaction of the aquifers, 
Mexico City has been undergoing rapid subsidence since 
the end of last century at rates of up to 40 cm/year in 
some sectors of its metropolitan area (López-Quiroz et al. 
2009; Osmanoğlu et al. 2011; Yan et al. 2012). Mexico 
City Basin can be divided into three main geotechnical 
zones: the Lake Zone (LZ), the Transition Zone (TZ), 
and the Foothills Zone (FZ) (see Fig. 3) (Yan et al. 2012). 

Fig. 4  Structure functions of the three turbulent fields. The blue circles are the calculated variance samples, and the gray curves are the best-
fitted spherical model
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The LZ subsoil is mainly composed of highly compress-
ible lacustrine clays. In contrast, the subsoil over the FZ 
mainly corresponds to heterogeneous volcano clastic 
deposits and lava, and the subsidence over this region is 
very small and can even be ignored (around 5 mm/year in 
the LOS direction of ASAR in the research of Osmanoğlu 
et al. 2011). In between, the TZ subsoil consists of gravel 
alluvial deposits and sand, intercalated with clay lenses 
and volcanic materials. The LZ is the major subsidence 
region of Mexico City Basin, and the FZ can be consid-
ered as a stable area. We select the displacement-known 
pixels from the FZ.

We obtained four Sentinel-1A SAR images and gener-
ated two 12-day interferograms (Table 2, Fig. 8) to test 
the proposed MPD-InSAR approach. The interferograms 
are processed using the ISCE (InSAR Scientific Comput-
ing Environment) software (Rosen et al. 2012). Precise 
Orbit Ephemerides (POE) data are used for the orbital 
parameters estimation, and the topography and flat earth-
related phases are removed based on the 30-m SRTM 
DEM, and the interferometric phases are unwrapped by 
using the minimum cost flow method.

4.2  Selection of displacement-known pixels

We selected the displacement-known pixels (non-deform-
ing pixels) from foothills zone with coherence large than 
0.95 and elevations under 2400 m. Coherence maps show-
ing the areas of potential displacement-known pixels and 
the corresponding DEM (with elevations smaller than 
2400 m) are illustrated as Fig. 9a–c. Because the eleva-
tions of the candidates of the displacement-known pix-
els are very close to those of the to-be-estimated pixels 
(i.e., deforming pixels over the area of interest), the pos-
sible stratified atmospheric delays in the phase differ-
ence (between the reference and to-be-estimated pixel) 
can be ignored and need not to be corrected explicitly. 
In addition, considering the spatial correlation of the 
atmospheric delays, we select the pixels as close to the 
deforming area as possible. We selected 120 displace-
ment-known pixels (gray rectangles in Fig. 9d, f) for the 
deformation reconstruction, and the coherences and ele-
vations of the selected pixels are shown as Fig. 9e, g for 
the two interferograms, respectively.

4.3  Stochastic modeling for multiple phase 
differences

The spatial variance samples of the turbulent atmospheric 
delays are estimated by using the interferometric phases over 
the Foothills Zone (i.e., non-deforming zone) with coher-
ence larger than 0.8 and elevations smaller than 2400 m, so 
that the effects of both the decorrelation noises and the pos-
sible stratified atmosphere on the estimation of the structure 
function model of the turbulent atmospheric delays would 
be very limited. The estimated variance samples and the 
best-fitted spherical models are shown in Fig. 10. It can be 
seen that the “Ranges” of the two structure functions are 
very similar (23.4 and 23.3 km), and the maximum variances 
(sum of the “Sill” and the “Nugget”) of the turbulent atmos-
pheric delays could be up to 0.87 and 0.96 cm2, respectively, 
when the distance between the two points is longer than 
the “Ranges”. We can see that the turbulence-caused vari-
ances of the two interferograms can be up to close 1 cm, 
and this is even larger than the possible maximum displace-
ments (~ 40 cm per year) over the research region during 
12 days. Therefore, it is certainly difficult to extract the real 
displacements over the region of interest from the original 
interferograms (Fig. 5a, b).

Based on the structure function models and the spatial 
locations of the displacement-known pixels, we can estimate 
the VCM (with dimensions of 120 × 120) of the MPDs pixel 
by pixel. Taking a pixel p0 (black triangle in the bottom left 
plot of Fig. 11) as an example, we present the two interfero-
gram-based VCMs of the MPDs as Fig. 11a (ascending) 
and b (descending). It should be noted that the VCMs of 
the MPDs are varied pixel by pixel, due to that the spatial 
geometry between the pixel of interest and the displacement-
known pixels is changed for different interested pixels, so 
both the variances and the covariances of the MPDs would 
change for different pixels.

4.4  Ground displacement reconstruction

Ground displacements over the region of interest are recon-
structed by using the MPD-InSAR approach (see Fig. 12). 
We focus on evaluating the precision of the MPD-InSAR-
derived displacements. In the northwestern part of the 
ascending interferogram over Mexico City region, the effects 
of the turbulent atmosphere are very significant (Fig. 12a), 
and in the southeastern part of the whole descending inter-
ferogram those turbulent delays have almost dominated all 
of the possible displacements (Fig. 12b). Thus, it is diffi-
cult to extract the possible ground displacements, which 
should be mainly occurred over the Lake Zone (inside the 
red line), from the conventional InSAR interferograms. In 
contrast, those turbulent atmospheres, occurred in conven-
tional InSAR-based results, are corrected efficiently for the 

Fig. 5  Deformations and the corresponding histograms over the 
deforming region related to both of conventional InSAR and the 
MPD-InSAR (with 20, 40, and 80 displacement-known pixels, sepa-
rately). The gray rectangles represent the locations of the used dis-
placement-known pixels. The red curves in the histograms are the 
best-fitted Gaussian distribution functions. Results along the transect 
AA’ in the first subfigure are presented in Fig. 6

◂
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MPD-InSAR-derived results. Two significant deforming 
regions, one from southwestern region of Nabor Carrillo 
and another from near Zona de Reserva Ecologica region, 
can be seen from Fig. 12c, d. The standard deviation (STD) 
maps of the reconstructed displacements calculated based on 
Eq. (18) are shown in Fig. 13. It can be seen that the original 
D-InSAR-based STDs are strongly correlated with the dis-
tances between the pixels of interest and selected reference 
pixel (gray rectangle at the northeastern part), and the STDs 
can be up to when the distance is close or over the “range” 
values (23.3 and 23.4 km for the two interferograms). Com-
pared with the original D-InSAR results, MPD-InSAR-based 
STDs (Fig. 13c, d) are decreased significantly (less than 

0.5 cm) for both the ascending and descending interfero-
grams. This suggests that the effects of the turbulent atmos-
phere are corrected efficiently in the two interferograms.

4.5  Results evaluation

Considering that the maximum displacements over Mex-
ico City is around 40 cm/year, we can safely consider that 
the real displacements during 12 days should be less than 
1.5 cm. Besides, we can also get that the subsidence-related 
LOS displacements should be negative values (move away 
from the satellite) in our experiments. Thus, those displace-
ments not between − 1.5 and 0 cm can be considered as 

Table 1  Summary of the mean values (unit: cm) and the standard deviations (unit: cm) of the deformation biases

The percentage improvements (Imp.) of the MPD–InSAR results are with respect to conventional InSAR results

Case 1 (k = − 1.85) Case 2 (k = − 2.25) Case 3 (k = − 2.65)
Mean Imp. (%) STD Imp. (%) Mean Imp. (%) STD Imp. (%) Mean Imp. (%) STD Imp. (%)

Conventional InSAR (1) 0.28 – 0.30 – 0.37 – 0.48 – − 0.34 – 0.28 –
MPD-InSAR (20) 0.13 53 0.28 7 0.18 51 0.34 29 − 0.18 47 0.24 14
MPD-InSAR (40) 0.05 82 0.29 3 0.14 62 0.28 42 − 0.10 70 0.18 35
MPD-InSAR (80) 0.07 75 0.25 17 0.05 86 0.26 46 − 0.03 91 0.16 42

Fig. 6  Experimental results 
along transect AA’. The first 
column is related to the dis-
placement, and the second col-
umn is related to the uncertainty 
(i.e., standard deviation) of the 
corresponding deformations for 
the three cases, respectively
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false deformation signals. Based on this, we calculated the 
percentages of the false displacement signals over the Laker 
Zone, which are shown in Table 3. We can see that the per-
centages of the conventional InSAR-based false deformation 
signals over the Laker Zone reach to 39.4% and 45.1% for 
the ascending and descending interferograms, while those 
of the MPD-InSAR-derived false signals are decreased 

Fig. 7  Shaded SRTM (shut-
tle radar topography mission) 
elevation relief over the Mexico 
City region. The light blue and 
red lines represent the Lake 
Zone (highly compressible) 
and Transition Zone (TZ), 
respectively. The area outside 
the red line is the Foothills Zone 
(stable area)

Table 2  Details of the used Sentinel-1A images

Date Platform Orbit Track Swath

January 29, 2016 Sentinel-1A Ascending 5 1
February 10, 2016 Sentinel-1A Ascending 5 1
January 26, 2016 Sentinel-1A Descending 143 3
February 7, 2016 Sentinel-1A Descending 143 3

Fig. 8  Geocoded unwrapped 
differential interferograms over 
Mexico City with a spatial reso-
lution of 30 m × 30 m: a ascend-
ing interferogram (20160129-
20160210); b descending 
interferogram (20160126-
20160207). The black rectangle 
accounts for further research 
region that includes Mexico 
City region, and the thin black 
line represents the outside 
edge of the Foothills Zone (see 
Fig. 7)



1324 Y. Cao et al.

1 3

to 22.8% (improved by 42.1%) and 18.5% (improved by 
71.5%), respectively.

The displacements along two profiles are presented in 
Fig. 14, where AA’ profile across the major northern part 
of Mexico City and BB’ transect the southern part (see the 
left plot of Fig. 14). The red circles represent the recon-
structed displacements from the MPD-InSAR approach, 
and the gray error bar means the STDs (plus and minus) 
of the MPD-InSAR-based displacements. The blue circles 
represent the original D-InSAR-based displacements. We 
can find that the original D-InSAR-based displacements 
are seriously biased; for example, the displacements 

close to the Transition Zone (near the breaking points) 
in Fig. 14a, b, d can reach to 2 cm, which should be close 
to 0, and the maximum subsidence in Fig. 14b, d (close 
to 3 cm) is significantly overestimated. As to the MPD-
InSAR-derived displacements (red circles), we can see that 
those biases (occurred in the original D-InSAR results) 
are well mitigated, and the maximum LOS displacements 
along AA’ profile (occurred close to Cola de Pato region) 
reach to around 1.5 cm (with an uncertainty of around 
5 mm) during 12 days in both ascending and descending 
images, and the maximum displacements along BB’ profile 
(occurred close to the northwestern area of Lake Chalco) 

Fig. 9  a, b Coherence maps that related to the potential areas of 
selecting the displacement-known pixels, c corresponding DEM maps 
with elevations smaller than 2400  m; d, f locations of the selected 

pixels; e, g the corresponding coherences and elevations of the 
selected displacement-known pixels
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reaches to around 1.6 cm (with an uncertainty of around 
4 mm) in the two interferograms.

We cross-validate the performance of the MPD-InSAR 
approach by evaluating the absolute differences between 
the subsidence derived from the ascending and descend-
ing interferograms. Considering that the radar LOS dis-
placements over Mexico City region are mainly caused 
by ground subsidence (Osmanoğlu et al. 2011; Yan et al. 
2012), we can convert them to vertical displacements 
using dup,p = dlos,p∕ cos

(
!inc,p

)
 , that dup,p is the vertical 

displacement at pixel p, dlos,p accounts for the InSAR-derived 
LOS displacement and θinc,p denotes the radar incidence 
angle. Because the time periods of the two interferograms 
are very close (20160129–20160210, 20160126–20160207), 
the subsidence during the two periods should be very simi-
lar. Based on this fact, histograms of the absolute differences 
show that 9% of the MPD-InSAR absolute differences are 
larger than 10 mm compared to over 25% for conventional 
InSAR (see Fig. 15), and the mean of the absolute differ-
ences is 4.5 mm for MPD-InSAR compared to 8.5 mm for 

Fig. 10  Structure function of the turbulent atmospheric delays in the two interferograms: a, b the structure function of the ascending and 
descending interferograms. The blue circles represent the variance samples and the gray line denotes the best-fitted spherical model

Fig. 11  Variance–covariance matrixes of the MPD-InSAR measurements at pixel p0 (see the bottom left plot) for the two interferograms: a, b 
the ascending and descending interferogram-based VCMs, respectively
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conventional InSAR. The smaller differences in subsidence 
between ascending and descending interferograms for MPD-
InSAR compared to conventional InSAR implies that the 
MPD-InSAR performs well for the mitigation of the turbu-
lent atmosphere.

5  Discussion

5.1  Effect of the number 
of the displacement-known pixels

It is easy to find that the amount of the used displacement-
known pixels plays a key role in the performance of MPD-
InSAR approach. Let us take the descending Sentinel-1A 
interferogram (20160126–20160207) as an example to do 
a further discussion.

We test four different amounts (10, 20, 40 and 120) of 
the used displacement-known pixels, and we control the 
effects of the spatial distribution (this will be discussed sepa-
rately) of the selected pixels by selecting the known pixels 
randomly from the previously used known pixels (e.g., we 
select the 40 known pixels randomly from the afore used 120 
known pixels, and then, we select 20 known pixels randomly 
from the afore used 40 known pixels). STD maps of the 
MPD-InSAR-derived displacements are shown as Fig. 16a–d 
for the four situations (N = 10, 20, 40 and 120), respectively, 
and the STDs along profile AA’ are illustrated in Fig. 16e. It 
can be seen that with the increase in the known-pixels num-
ber, the STDs of the reconstructed displacements are becom-
ing smaller and smaller. Ten known-pixel-based STDs can 
be up to 8 mm (like southeastern part of the research region), 
and the 120 known-pixel-based STDs are all decreased to 
around 5 mm. In order to evaluate this effect quantitatively, 

Fig. 12  Comparisons between D-InSAR- and MPD-InSAR-based 
displacements: a, b original D-InSAR-based displacements; c, d the 
MPD-InSAR-based results by using 120 reference points. The gray 
rectangles mean the locations of the selected displacement-known 

pixels, and the black line responds to the edge of the Foothills Zone. 
Positive values mean move toward the satellite and negative values 
respond to move away from the satellite
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we test the improvement (i.e., decreasing) of the STDs with 
the increase in the known-pixels number (increase from 5 
to 120 with a step size of 5) at three different points on AA’ 
profile (p1, p2 and p3 in Fig. 16a), and we repeat 300 times 
by selecting the known pixels randomly around the inter-
ested region for each known-pixels number sample to get 
an average STD. Relationship between STDs and the used 
known-pixels number is presented in Fig. 17. We can find 
that, compared with 5 known-pixel-based STDs, the 120 
known-pixel-derived STDs are improved by 27% (from 6.5 

to 4.7 mm), 23% (from 7 to 5.4 mm), and 31% (from 6.7 
to 4.6 mm) for the three points, respectively. The STDs’ 
decreasing ratios are shown in Fig. 17b, and we can see that 
the change ratios of the STDs are decreased rapidly with the 
increase in the known-pixels number, the decreasing ratios 
for 10 known pixels can be up to around 0.01 cm/point, 
this means when we use one more reference point, the STD 
would decrease 0.01 cm. When the known-pixels number 
reaches to 60, the ratio is decreased to around 0.001 cm/
point. This shows that the results improve with the number 
of displacement-known pixels, but that the improvement 
tends to stop with further increased number of pixels.

5.2  Effects of spatial distribution of the used 
displacement-known pixels

As analyzed before, the spatial distribution (i.e., spatial 
geometry) of the displacement-known pixels would also 
affect the performance of MPD-InSAR. In other words, 
even we use the same number of the known pixels, the 

Fig. 13  Standard deviations (STD) of the displacements: a, b the STD maps of the original D-InSAR-based LOS displacements (estimated based 
on the isotropic spherical model of the turbulent atmosphere); c, d the STD maps of the MPD-InSAR-based LOS displacements

Table 3  Summary of the false displacement signals in the ascending 
and the descending interferograms

Methods/data Ifg1/ascending Ifg2/descending
False signals Ratio (%) False signals Ratio (%)

Conventional 
InSAR

280,306 39.4 450,906 45.1

MPD-InSAR 162,331 22.8 128,349 18.5
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MPD-InSAR-derived displacements and their precision 
(i.e., standard deviations) would be different if the spatial 
distributions of the known pixels are different.

Let us consider a circle-interested area with a same tur-
bulent structure function of the ascending interferogram 
over Mexico City, and we test the theoretical standard 
deviations of the MPD-InSAR-based ground displacements 
under three situations: (1) 10 known pixels distributed uni-
formly around the deforming region with a same radius of 
20 km; (2) 10 known pixels distributed around the half part 
of the deforming region; (3) the known pixels distributed 
around only one-sixth part of the deforming circle. Results 
are presented in Fig. 18, and the black rectangles represent 
the selected displacement-known pixels. It is easy to find 
that the spatial geometry of the selected known pixels has 
a big influence on the final results, and the first situation-
based results are obviously better than the other two situ-
ations as a whole, especially in the northern part of the 
interested region. The three related variance–covariance 
matrixes of pixel p0 are presented as Fig. 19. Because the 
distances between the known pixels and the pixel of inter-
est are all equal to 20 km, variances (diagonal elements) 
of MPD-derived displacements are all equal to 1.76 cm2. 
While it can be seen that there are big differences among 
the covariances (non-diagonal elements) and covariances 
of the third situation (known pixels distributed around the 
one-sixth of the deforming circle are obviously larger than 
that of the other two situations), this implies that the correla-
tions among the known pixels in Fig. 18c are much stronger 

Fig. 14  Displacements along the AA’ and BB’ profiles: a, b the AA’ 
profile-related results correspond to the ascending and descending 
interferograms, respectively; c, d the BB’ profile-related results. The 

gray error bar represents the STDs (plus and minus) of the MPD-
InSAR-based displacements

Fig. 15  Absolute differences between ascending and descending 
interferogram-based ground subsidence
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Fig. 16  Standard deviation of 
MPD-InSAR-derived dis-
placements by using different 
numbers of the selected known 
pixels: a–d the MPD-InSAR-
based STD maps by using 10, 
20, 40 and 120 known pixels 
(the gray rectangles account for 
the locations of the used refer-
ence point); e the MPD-InSAR-
based STDs along AA’ profile, 
and the black, blue, green and 
red curves correspond to 10, 20, 
40 and 120 displacement-known 
pixels, respectively

Fig. 17  Relationship between 
known-pixels amount and 
STDs: a STD changing trends 
for the three different points; b 
the STD decreasing ratios with 
the increase in the known-pixels 
amount
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than the other two situations. This suggests that correlation 
between the known pixels plays a negative influence on the 
performance of the MPD-InSAR approach, and we should 
select the known pixels as uniformly distributed as possible 
around the interested regions.

5.3  Effects of the displacement errors 
of the selected displacement-known pixels

The displacements errors of the known pixels would obvi-
ously affect the MPD-InSAR-derived displacements. However, 
variances (or uncertainties) of the used prior displacements of 

the known pixels are usually unknown and difficult to model; 
we do not consider their stochastic model in Sect. 2.4. Here 
we assume that the variances of the prior displacements are 
known, and further consider that the prior displacement errors 
are independent; then, the VCM model of MPD-InSAR meas-
urements (Eq. 12) can be transformed into:

(21)D
′
Lp

= DLp
+

⎡
⎢
⎢
⎢
⎢⎣

!2
r1

!2
r2

⋱

!2
rn

⎤
⎥
⎥
⎥
⎥⎦

Fig. 18  Three spatial distribution situation-based standard deviations: 
a 10 known pixels distributed uniformly around the deforming region 
with a same radius of 20 km; b 10 known pixels distributed around 

the half part of the deforming region; c the known pixels distributed 
around only one-sixth part of the deforming circle

Fig. 19  VCMs of MPD-InSAR measurements at pixel p0 (central 
point of the interested region): a selected known pixels distributed 
uniformly around deforming region; b selected known pixels distrib-

uted around half circle of the interested region; c selected known pix-
els distributed only around the one-sixth of the deforming circle
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where D′
Lp

 is the new VCM model that is meant to take the 
prior displacement errors into consideration, and DLp

 
accounts for the original VCM model (see Fig.  16), 
!2
ri
(i = 1, 2,… , n ) represents the variance of the prior dis-

placement error of the ith known pixel. Theoretical variance 
of the MPD-InSAR-derived displacements (see Eq. 18) can 
be re-defined as:

In order to test the effect of the prior displacement 
errors on the MPD-InSAR results, we take the descending 
i n t e r f e r o g r a m  o v e r  M e x i c o  C i t y  r e g i o n 
(20160126–20160207) as an example, and we choose the 
point p1 (see Fig. 16a) to do a further analysis. Three situ-
ations are considered: (1) 1/2 of the known pixels have 
prior displacement errors; (2) 3/4 of the known pixels have 
errors; (3) all of the selected known pixels with displace-
ments errors, and we assume that the displacements errors 
have the same uncertainties and test three levels: (1) 
!2
dr
= 0.1 cm2 ; (2) !2

dr
= 0.3 cm2 ; (3) !2

dr
= 0.5 cm2 . This 

means the uncertainties (i.e., standard deviation) of the 
displacement errors can be up to 3, 5, and 7 mm, respec-
tively. For each case (3 × 3 = 9), we repeat 300 times to get 
an average value by selecting the known pixels randomly 
and also choosing those biased displacement-known pixels 
randomly. We estimate the weights vector (Eq. 20) by 
using the original VCM (that does not consider the prior 
displacement error), and we calculate the standard devia-
tion of the reconstructed displacement based on the new 
VCM by using Eq.  (22). Standard deviations of the 

(22)Var
{
d̂p
}
= !p × D

′
Lp
× !

T
p

MPD-InSAR-derived displacements that consider the prior 
displacement errors are presented in Fig. 16. We can find 
that, if the used prior displacements are biased and we do 
not consider those biases in our stochastic model, the eval-
uated uncertainties of the reconstructed displacements 
would be underestimated. It can be seen that, when uncer-
tainties of the prior displacement errors are around 3 mm 
( !2

dr
= 0.1 cm2 ), effects of prior displacement errors are 

very limited and four kinds of STDs are very close (see 
Fig. 20a). With the rise of the uncertainties of the prior 
displacements, uncertainties of the MPD-InSAR-derived 
displacements also tend to be increased. In addition, the 
more known pixels have errors, the worse results tend to 
be. We also can find that, even all of the known pixels have 
prior displacement errors (i.e., biases), the more the known 
pixels we used, the better the results we can get. Like that 
in Fig. 20c, even all the known pixels have an uncertainty 
of 7 mm ( !2

dr
= 0.5 cm2 ), when we use up to 120 reference 

points, STDs of the MPD-InSAR-derived displacements 
also can be decreased to below 5.5 mm (that of the original 
conventional InSAR-derived result is around 1 cm, see 
Fig. 13b).

In practice, it is really not possible to make sure all 
of the used prior displacements (assume to be zero for 
selected “stable” points or obtain from external displace-
ment dataset) have no biases, what we can do is to control 
all of the selected displacement-known pixels as stable 
(un-deformed) as possible. From our experiments, we can 
conclude that, even all of the used known pixels have prior 
displacement errors (even up to 7 mm), the MPD-InSAR 
approach still performs well for reconstructing the true 
ground displacements.

Fig. 20  Effects of the prior displacement errors on the MPD-
InSAR-based results at pixel p1: a !2

dr
= 0.1 cm2 ; b !2

dr
= 0.3 cm2 ; c 

!2
dr
= 0.5 cm2 . !2

dr
 means the variance of those biased prior displace-

ments. Red circles represent the MPD-InSAR results that no known 

pixels have prior displacement errors. Green circles, blue circles 
and black circles denote the results that when 1/2, 3/4 and all of the 
known pixels have errors, respectively
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5.4  Effects of possible un-compensated error 
components

In our method, we assume that the spatially correlated com-
ponents of the observation errors are mainly caused by the 
turbulent atmospheric delays. In practice, the spatially cor-
related errors in an interferograms could be much more com-
plicated than what we assumed, if some systematic errors 
or outliers were not completely compensated or calibrated. 
For example, the un-removed stratified atmospheric delays, 
possible residual orbital errors (the nonlinear components), 
DEM errors, unwrapping errors, and ionospheric phases 
(especially for long-wavelength SAR interferometry, e.g., 
L-band) can potentially exist in an interferograms and are 
spatially correlated too. However, the spatial stochastic 
properties of these components (e.g., residual orbital errors) 
are seldom or still not well studied till now. If these un-
compensated components are spatially stationary and can 
be modeled by using a structure function based on the geo-
statistical method, then it is easy to conclude that they could 
be handled together with the turbulent atmosphere, and the 
proposed MPD-InSAR would still work fine for mitigating 
the effects of these components (all of the above spatial 
correlated components) in the reconstruction of the ground 
displacements. If these un-compensated components are 
non-stationary, no doubt, the performance of the proposed 
MPD-InSAR method would be affected to some degree, due 
to the incapability that the classical geostatistical method 
and structure function are used to model the non-stationar-
ity spatial random field. This, however, will be our future 
research topic.

6  Conclusions and outlooks

In this paper, we have presented a novel multiple phase dif-
ference-based InSAR approach (MPD-InSAR) to reconstruct 
the ground displacements by using multiple displacement-
known pixels, and the number of that is only one for conven-
tional InSAR, which is generally referred to as the reference 
pixel. In our method, a stochastic model of the MPD-InSAR 
measurements is considered and estimated pixel by pixel, 
and a minimum variance-based linear estimator was pro-
posed to reconstruct the ground deformation. The new 
method is tested by using both the simulated datasets and 
the real Sentinel-1A data over Mexico City region, and the 
experimental results show that the MPD-InSAR approach 
can mitigate the atmospheric turbulence robustly, and the 
more displacement-known pixels we used, the more accurate 
the reconstructed deformations tend to be. Compared with 
the present tropospheric delay mitigation methods, our new 
method opens a new sight for mitigating the turbulent atmos-
phere effects, and this method can be implemented flexibly 

no matter with or without external displacement dataset, and 
our method is also a good supplement for the present strati-
fied atmosphere correction methods that cannot correct the 
effects of the turbulent atmosphere, like NWM-based meth-
ods, topography correlation-based methods.

Stochastic modeling for the MPD-derived displacements 
plays a key role in the MPD-InSAR approach. More accurate 
and reliable models for estimating the variance–covariance 
components of atmospheric delays and decorrelation noise 
may yield better results. In addition, possible errors due to 
the orbital errors, unwrapped errors, topography residuals 
also should be considered in practice. In this research, we 
only focus on the space domain (one interferogram); how to 
incorporate our method into time-series InSAR techniques 
would also be considered in our future researches.
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